

    
      
          
            
  
Homepage of shorttext

This repository is a collection of algorithms for multi-class classification to short texts using Python.
Modules are backward compatible unless otherwise specified. Feel free to give suggestions or report
issues through the Issue [https://github.com/stephenhky/PyShortTextCategorization/issues] tab of the Github [https://github.com/stephenhky/PyShortTextCategorization] page. This is a PyPI [https://pypi.org/project/shorttext/] project. This is an open-source
project under the MIT License [https://github.com/stephenhky/PyShortTextCategorization/blob/master/LICENSE] .

Contents:



	Introduction

	Installation

	Tutorial

	Console Scripts

	API

	Frequently Asked Questions (FAQ)

	References

	Links

	News







Indices and tables


	Index


	Module Index


	Search Page







            

          

      

      

    

  

    
      
          
            
  
Introduction

This package shorttext is a Python package that facilitates supervised and unsupervised
learning for short text categorization. Due to the sparseness of words and
the lack of information carried in the short texts themselves, an intermediate
representation of the texts and documents are needed before they are put into
any classification algorithm. In this package, it facilitates various types
of these representations, including topic modeling and word-embedding algorithms.

The package shorttext runs on Python 3.8, 3.9, 3.10, and 3.11.

Characteristics:


	example data provided (including subject keywords and NIH RePORT); (see Data Preparation)


	text preprocessing; (see Text Preprocessing)


	pre-trained word-embedding support; (see Word Embedding Models)


	gensim topic models (LDA, LSI, Random Projections) and autoencoder; (see Supervised Classification with Topics as Features)


	topic model representation supported for supervised learning using scikit-learn; (see Supervised Classification with Topics as Features)


	cosine distance classification; (see Supervised Classification with Topics as Features, Word-Embedding Cosine Similarity Classifier)


	neural network classification (including ConvNet, and C-LSTM); (see Deep Neural Networks with Word-Embedding)


	maximum entropy classification; (see Maximum Entropy (MaxEnt) Classifier)


	metrics of phrases differences, including soft Jaccard score (using Damerau-Levenshtein distance), and Word Mover’s distance (WMD); (see Metrics)


	character-level sequence-to-sequence (seq2seq) learning; (see Character-Based Sequence-to-Sequence (seq2seq) Models)


	spell correction; (see Spell Correctors)


	API for word-embedding algorithm for one-time loading; (see Word Embedding Models in API) and


	Sentence encodings and similarities based on BERT (see Word Embedding Models and Metrics).




Before release 0.7.2, part of the package was implemented using C, and it is interfaced to
Python using SWIG [http://www.swig.org/] (Simplified Wrapper and Interface Generator). Since 1.0.0, these implementations
were replaced with Cython [http://cython.org/].

Author: Kwan Yuet Stephen Ho (LinkedIn [https://www.linkedin.com/in/kwan-yuet-ho-19882530], ResearchGate [https://www.researchgate.net/profile/Kwan-yuet_Ho], Twitter [https://twitter.com/stephenhky])

Home: Homepage of shorttext




            

          

      

      

    

  

    
      
          
            
  
Installation


PIP

Package shorttext runs in Python 3.6, 3.7, and 3.8. However, for Python>=3.7, the backend
of keras [https://keras.io/] cannot be Tensorflow [https://www.tensorflow.org/].

To install the package in Linux or OS X, enter the following in the console:

pip install -U shorttext





It is very possible that you have to do it as root, that you have to add sudo in
front of the command.

On the other hand, to get the development version on Github, you can install from Github [https://github.com/stephenhky/PyShortTextCategorization]:

pip install -U git+https://github.com/stephenhky/PyShortTextCategorization@master





By adding -U in the command, it automatically installs the required packages. If not,
you have to install these packages on your own.



Backend for Keras

The package keras [https://keras.io/] (version >= 2.0.0) uses either Tensorflow [https://www.tensorflow.org/], Theano [http://deeplearning.net/software/theano/], or CNTK [https://github.com/Microsoft/CNTK/wiki] as the backend, while Theano is usually
the default. However, it is highly recommended to use Tensorflow as the backend.
Users are advised to install the backend Tensorflow [https://www.tensorflow.org/] (preferred for Python 2.7, 3.5, and 3.6) or
Theano [http://deeplearning.net/software/theano/] (preferred for Python 3.7) in advance. Refer to
Frequently Asked Questions (FAQ) for how to switch the backend. It is also desirable if the package Cython [http://cython.org/] has been previously installed.



Possible Solutions for Installation Failures

Most developers can install shorttext with the instructions above. If the installation fails,
you may try one (or more) of the following:


	Installing Python-dev by typing:




pip install -U python3-dev






	Installing gcc by entering




apt-get install libc6







Required Packages


	Numpy [http://www.numpy.org/] (Numerical Python, version >= 1.16.0)


	SciPy [https://www.scipy.org/] (Scientific Python, version >= 1.2.0)


	Scikit-Learn [http://scikit-learn.org/stable/] (Machine Learning in Python, version >= 0.23.0)


	keras [https://keras.io/] (Deep Learning Library for Theano and Tensorflow, version >= 2.3.0)


	gensim [https://radimrehurek.com/gensim/] (Topic Modeling for Humans, version >= 3.8.0)


	Pandas [http://pandas.pydata.org/] (Python Data Analysis Library, version >= 1.0.0)


	snowballstemmer [https://github.com/snowballstem/snowball] (Snowball Stemmer, version >= 2.0.0)


	TensorFlow [https://www.tensorflow.org/] (TensorFlow, version >= 2.0.0)


	Joblib [https://joblib.readthedocs.io/en/latest/] (Joblib: lightweight Python pipelining, version >= 0.14)




Home: Homepage of shorttext





            

          

      

      

    

  

    
      
          
            
  
Tutorial

After installation, you are ready to start testing the convenience and power
of the package.

Before using, type

>>> import shorttext





You will get the message that Theano, Tensorflow or CNTK backend is used for keras. Refer to Keras Backend [https://keras.io/backend/] for information about switching backends.



	Data Preparation
	Example Training Data 1: Subject Keywords

	Example Training Data 2: NIH RePORT

	Example Training Data 3: Inaugural Addresses

	User-Provided Training Data





	Text Preprocessing
	Standard Preprocessor

	Customized Text Preprocessor

	Tokenization

	Reference





	Document-Term Matrix
	Preparing for the Corpus

	Using Class DocumentTermMatrix

	Reference





	Character to One-Hot Vector
	Reference





	Supervised Classification with Topics as Features
	Topic Vectors as Intermediate Feature Vectors

	Topic Models in gensim: LDA, LSI, and Random Projections

	AutoEncoder

	Abstract Latent Topic Modeling Class

	Classification Using Cosine Similarity

	Classification Using Scikit-Learn Classifiers

	Notes about Text Preprocessing

	Reference





	Word Embedding Models
	Word2Vec

	GloVe

	FastText

	Poincaré Embeddings

	BERT

	Other Functions

	Links

	Reference





	Word-Embedding Cosine Similarity Classifier
	Sum of Embedded Vectors

	Reference





	Deep Neural Networks with Word-Embedding
	Wrapper for Neural Networks for Word-Embedding Vectors

	Provided Neural Networks

	Reference





	Maximum Entropy (MaxEnt) Classifier
	Maxent

	Reference





	Character-Based Sequence-to-Sequence (seq2seq) Models
	Creating One-hot Vectors

	Training

	Decoding

	Model I/O

	Reference





	Stacked Generalization
	Reference





	Metrics
	Edit Distance and Soft Jaccard Score

	Word Mover’s Distance

	Jaccard Index Due to Cosine Distances

	BERTScore

	Reference





	Spell Correctors
	Norvig

	Sakaguchi (SCRNN - semi-character recurrent neural network)

	Reference









Home: Homepage of shorttext




            

          

      

      

    

  

    
      
          
            
  
Data Preparation

This package deals with short text. While the text data for predictions or
classifications are simply str or list of str, the training data does
take a specific format, in terms of dict, the Python dictionary (or hash
map). The package provides two sets of data as an example.


Example Training Data 1: Subject Keywords

The first example dataset is about the subject keywords, which can be loaded by:

>>> trainclassdict = shorttext.data.subjectkeywords()





This returns a dictionary, with keys being the label and the values being lists of
the subject keywords, as below:

{'mathematics': ['linear algebra', 'topology', 'algebra', 'calculus',
  'variational calculus', 'functional field', 'real analysis', 'complex analysis',
  'differential equation', 'statistics', 'statistical optimization', 'probability',
  'stochastic calculus', 'numerical analysis', 'differential geometry'],
 'physics': ['renormalization', 'classical mechanics', 'quantum mechanics',
  'statistical mechanics', 'functional field', 'path integral',
  'quantum field theory', 'electrodynamics', 'condensed matter',
  'particle physics', 'topological solitons', 'astrophysics',
  'spontaneous symmetry breaking', 'atomic molecular and optical physics',
  'quantum chaos'],
 'theology': ['divine providence', 'soteriology', 'anthropology', 'pneumatology', 'Christology',
  'Holy Trinity', 'eschatology', 'scripture', 'ecclesiology', 'predestination',
  'divine degree', 'creedal confessionalism', 'scholasticism', 'prayer', 'eucharist']}







Example Training Data 2: NIH RePORT

The second example dataset is from NIH RePORT (Research Portfolio Online Reporting Tools).
The data can be downloaded from its ExPORTER [https://exporter.nih.gov/about.aspx] page. The current data in this package was directly
adapted from Thomas Jones’ textMineR [https://github.com/TommyJones/textmineR] R package.

Enter:

>>> trainclassdict = shorttext.data.nihreports()





Upon the installation of the package, the NIH RePORT data are still not
installed. But the first time it was ran, it will be downloaded from the Internet.


	This will output a similar dictionary with FUNDING_IC (Institutes and Centers in NIH)
	as the class labels, and PROJECT_TITLE (title of the funded projects)





as the short texts under the corresponding labels. This dictionary has 512 projects in total,
randomly drawn from the original data.

However, there are other configurations:



Example Training Data 3: Inaugural Addresses

This contains all the Inaugural Addresses of all the Presidents of the United States, from
George Washington to Barack Obama. Upon the installation of the package, the Inaugural Addresses
data are still not installed. But the first time it was ran, it will be downloaded from the Internet.

The addresses are available publicly, and I extracted them from nltk [http://www.nltk.org/] package.

Enter:

>>> trainclassdict = shorttext.data.inaugural()







User-Provided Training Data

Users can provide their own training data. If it is already in JSON format, it can be loaded easily
with standard Python’s json package, or by calling:

>>> trainclassdict = shorttext.data.retrieve_jsondata_as_dict('/path/to/file.json')





However, if it is in CSV format, it has to obey the rules:


	there is a heading; and


	there are at least two columns: first the labels, and second the short text under the labels (everything being the second column will be neglected).




An excerpt of this type of data is as follow:

subject,content
mathematics,linear algebra
mathematics,topology
mathematics,algebra
...
physics,spontaneous symmetry breaking
physics,atomic molecular and optical physics
physics,quantum chaos
...
theology,divine providence
theology,soteriology
theology,anthropology





To load this data file, just enter:

>>> trainclassdict = shorttext.data.retrieve_csvdata_as_dict('/path/to/file.csv')





Home: Homepage of shorttext





            

          

      

      

    

  

    
      
          
            
  
Text Preprocessing


Standard Preprocessor

When the bag-of-words (BOW) model is used to represent the content, it is essential to
specify how the text is preprocessed before it is passed to the trainers or the
classifiers.

This package provides a standard way of text preprocessing, which goes through the
following steps:


	removing special characters,


	removing numerals,


	converting all alphabets to lower cases,


	removing stop words, and


	stemming the words (using Snowball Porter stemmer).




To do this, load the preprocesser generator:

>>> from shorttext.utils import standard_text_preprocessor_1





Then define the preprocessor, a function, by just calling:

>>> preprocessor1 = standard_text_preprocessor_1()





It is a function that perform the preprocessing in the steps above:

>>> preprocessor1('Maryland Blue Crab')  # output:  'maryland blue crab'
>>> preprocessor1('filing electronic documents and goes home. eat!!!')   # output: 'file electron document goe home eat'







Customized Text Preprocessor

The standard preprocessor is good for many general natural language processing tasks,
but some users may want to define their own preprocessors for their own purposes.
This preprocessor is used in topic modeling, and is desired to be a function that takes
a string, and returns a string.

If the user wants to develop a preprocessor that contains a few steps, he can make it by providing
the pipeline, which is a list of functions that input a string and return a string. For example,
let’s develop a preprocessor that 1) convert it to base form if it is a verb, or keep it original;
2) convert it to upper case; and 3) tag the number of characters after each token.

Load the function that generates the preprocessor function:

>>> from shorttext.utils import text_preprocessor





Initialize a WordNet lemmatizer using nltk:

>>> from nltk.stem import WordNetLemmatizer
>>> lemmatizer = WordNetLemmatizer()





Define the pipeline. Functions for each of the steps are:

>>> step1fcn = lambda s: ' '.join([lemmatizer.lemmatize(s1) for s1 in s.split(' ')])
>>> step2fcn = lambda s: s.upper()
>>> step3fcn = lambda s: ' '.join([s1+'-'+str(len(s1)) for s1 in s.split(' ')])





Then the pipeline is:

>>> pipeline = [step1fcn, step2fcn, step3fcn]





The preprocessor function can be generated with the defined pipeline:

>>> preprocessor2 = text_preprocessor(pipeline)





The function preprocessor2 is a function that input a string and returns a string.
Some examples are:

>>> preprocessor2('Maryland blue crab in Annapolis')  # output: 'MARYLAND-8 BLUE-4 CRAB-4 IN-2 ANNAPOLIS-9'
>>> preprocessor2('generative adversarial networks')  # output: 'GENERATIVE-10 ADVERSARIAL-11 NETWORK-7'







Tokenization

Users are free to choose any tokenizer they wish. In shorttext, the tokenizer is
simply the space delimiter, and can be called:

>>> shorttext.utils.tokenize('Maryland blue crab')   # output: ['Maryland', 'blue', 'crab']







Reference

Christopher Manning, Hinrich Schuetze, Foundations of Statistical Natural Language Processing (Cambridge, MA: MIT Press, 1999). [MIT Press [https://mitpress.mit.edu/books/foundations-statistical-natural-language-processing]]

“R or Python on Text Mining,” Everything About Data Analytics, WordPress (2015). [WordPress [https://datawarrior.wordpress.com/2015/08/12/codienerd-1-r-or-python-on-text-mining]]

Home: Homepage of shorttext





            

          

      

      

    

  

    
      
          
            
  
Document-Term Matrix


Preparing for the Corpus

We can create and handle document-term matrix (DTM) with shorttext. Use the dataset of Presidents’
Inaugural Addresses as an example.

>>> import shorttext
>>> usprez = shorttext.data.inaugural()





We have to make each presidents’ address to be one document to achieve our purpose. Enter this:

>>> docids = sorted(usprez.keys())
>>> usprez = [' '.join(usprez[docid]) for docid in docids]





Now the variable usprez is a list of 56 Inaugural Addresses from George Washington (1789) to
Barack Obama (2009), with the IDs stored in docids. We apply the standard text preprocessor and
produce a list of lists (of tokens) (or a corpus in gensim):

>>> preprocess = shorttext.utils.standard_text_preprocessor_1()
>>> corpus = [preprocess(address).split(' ') for address in usprez]





Then now the variable corpus is a list of lists of tokens. For example,

>>> corpus[0]     # shows all the preprocessed tokens of the first Presidential Inaugural Addresses







Using Class DocumentTermMatrix

With the corpus ready in this form, we can create a DocumentTermMatrix class for DTM by:

>>> usprez_dtm = shorttext.utils.DocumentTermMatrix(corpus, docids=docids)





One can get the document frequency of any token (the number of documents that the given
token is in) by:

>>> usprez_dtm.get_doc_frequency('peopl')  # gives 54, the document frequency of the token "peopl"





or the total term frequencies (the total number of occurrences of the given tokens in all documents) by:

>>> usprez_dtm.get_total_termfreq('justic')   # gives 134.0, the total term frequency of the token "justic"





or the term frequency for a token in a given document by:

>>> usprez_dtm.get_termfreq('2009-Obama', 'chang')    # gives 2.0





We can also query the number of occurrences of a particular word of all documents,
stored in a dictionary, by:

>>> usprez_dtm.get_token_occurences('god')





Of course, we can always reweigh the counts above (except document frequency) by imposing
tf-idf while creating the instance of the class by enforceing tfidf to be True:

>>> usprez_dtm = shorttext.utils.DocumentTermMatrix(corpus, docids=docids, tfidf=True)





To save the class, enter:

>>> usprez_dtm.save_compact_model('/path/to/whatever.bin')





To load this class later, enter:

>>> usprez_dtm2 = shorttext.utils.load_DocumentTermMatrix('/path/to/whatever.bin')







Reference

Christopher Manning, Hinrich Schuetze, Foundations of Statistical Natural Language Processing (Cambridge, MA: MIT Press, 1999). [MIT Press [https://mitpress.mit.edu/books/foundations-statistical-natural-language-processing]]

“Document-Term Matrix: Text Mining in R and Python,” Everything About Data Analytics, WordPress (2018). [WordPress [https://datawarrior.wordpress.com/2018/01/22/document-term-matrix-text-mining-in-r-and-python/]]

Home: Homepage of shorttext





            

          

      

      

    

  

    
      
          
            
  
Character to One-Hot Vector

Since version 0.6.1, the package shorttext deals with character-based model. A first important
component of character-based model is to convert every character to a one-hot vector. We provide a class
shorttext.generators.SentenceToCharVecEncoder to deal with this. Thi class incorporates
the OneHotEncoder in scikit-learn and Dictionary in gensim.

To use this, import the packages first:

>>> import numpy as np
>>> import shorttext





Then we incorporate a text file as the source of all characters to be coded. In this case, we choose
the file big.txt in Peter Norvig’s websites:

>>> from urllib.request import urlopen
>>> textfile = urlopen('http://norvig.com/big.txt', 'r')





Then instantiate the class using the function shorttext.generators.initSentenceToCharVecEncoder():

>>> chartovec_encoder = shorttext.generators.initSentenceToCharVecEncoder(textfile)





Now, the object chartovec_encoder is an instance of shorttext.generators.SentenceToCharVecEncoder . The
default signal character is n, which is also encoded, and can be checked by looking at the field:

>>> chartovec_encoder.signalchar





We can convert a sentence into a bunch of one-hot vectors in terms of a matrix. For example,

>>> chartovec_encoder.encode_sentence('Maryland blue crab!', 100)
<1x93 sparse matrix of type '<type 'numpy.float64'>'
        with 1 stored elements in Compressed Sparse Column format>





This outputs a sparse matrix. Depending on your needs, you can add signal character to the beginning
or the end of the sentence in the output matrix by:

>>> chartovec_encoder.encode_sentence('Maryland blue crab!', 100, startsig=True, endsig=False)
>>> chartovec_encoder.encode_sentence('Maryland blue crab!', 100, startsig=False, endsig=True)





We can also convert a list of sentences by

>>> chartovec_encoder.encode_sentences(sentences, 100, startsig=False, endsig=True, sparse=False)





You can decide whether or not to output a sparse matrix by specifiying the parameter sparse.


Reference

Aurelien Geron, Hands-On Machine Learning with Scikit-Learn and TensorFlow (Sebastopol, CA: O’Reilly Media, 2017). [O'Reilly [http://shop.oreilly.com/product/0636920052289.do]]

Home: Homepage of shorttext





            

          

      

      

    

  

    
      
          
            
  
Supervised Classification with Topics as Features


Topic Vectors as Intermediate Feature Vectors

To perform classification using bag-of-words (BOW) model as features,
nltk and gensim offered good framework. But the feature vectors
of short text represented by BOW can be very sparse. And the relationships
between words with similar meanings are ignored as well. One of the way to
tackle this is to use topic modeling, i.e. representing the words
in a topic vector. This package provides the following ways to model
the topics:


	LDA (Latent Dirichlet Allocation)


	LSI (Latent Semantic Indexing)


	RP (Random Projections)


	Autoencoder




With the topic representations, users can use any supervised learning
algorithm provided by scikit-learn to perform the classification.



Topic Models in gensim: LDA, LSI, and Random Projections

This package supports three algorithms provided by gensim, namely, LDA, LSI, and
Random Projections, to do the topic modeling.

>>> import shorttext





First, load a set of training data (all NIH data in this example):

>>> trainclassdict = shorttext.data.nihreports(sample_size=None)





Initialize an instance of topic modeler, and use LDA as an example:

>>> topicmodeler = shorttext.generators.LDAModeler()





For other algorithms, user can use LSIModeler for LSI or RPModeler
for RP. Everything else is the same.
To train with 128 topics, enter:

>>> topicmodeler.train(trainclassdict, 128)





After the training is done, the user can retrieve the topic vector representation
with the trained model. For example,

>>> topicmodeler.retrieve_topicvec('stem cell research')





>>> topicmodeler.retrieve_topicvec('bioinformatics')





By default, the vectors are normalized. Another way to retrieve the topic vector
representation is as follow:

>>> topicmodeler['stem cell research']





>>> topicmodeler['bioinformatics']





In the training and the retrieval above, the same preprocessing process is applied.
Users can provide their own preprocessor while initiating the topic modeler.

Users can save the trained model by calling:

>>> topicmodeler.save_compact_model('/path/to/nihlda128.bin')





And the topic model can be retrieved by calling:

>>> topicmodeler2 = shorttext.generators.load_gensimtopicmodel('/path/to/nihlda128.bin')





While initialize the instance of the topic modeler, the user can also specify
whether to weigh the terms using tf-idf (term frequency - inverse document frequency).
The default is to weigh. To not weigh, initialize it as

>>> topicmodeler3 = shorttext.generators.GensimTopicModeler(toweigh=False)






Appendix: Model I/O in Previous Versions

For previous versions of shorttext, the trained models are saved by calling:

>>> topicmodeler.savemodel('/path/to/nihlda128')





However, we discourage users using this anymore, because the model I/O for various models
in gensim have been different. It produces errors.

All of them have to be present in order to be loaded. Note that the preprocessor is
not saved. To load the model, enter:

>>> topicmodeler2 = shorttext.classifiers.load_gensimtopicmodel('/path/to/nihlda128', compact=False)








AutoEncoder

Note: Previous version (<=0.2.1) of this autoencoder has a serious bug. Current version is
incompatible with the autoencoder of version <=0.2.1 .

Another way to find a new topic vector representation is to use the autoencoder, a neural network model
which compresses a vector representation into another one of a shorter (or longer, rarely though)
representation, by minimizing the difference between the input layer and the decoding layer.
For faster demonstration, use the subject keywords as the example dataset:

>>> subdict = shorttext.data.subjectkeywords()





To train such a model, we perform in a similar way with the LDA model (or LSI and random projections above):

>>> autoencoder = shorttext.generators.AutoencodingTopicModeler()
>>> autoencoder.train(subdict, 8)





After the training is done, the user can retrieve the encoded vector representation
with the trained autoencoder model. For example,

>>> autoencoder.retrieve_topicvec('linear algebra')





>>> autoencoder.retrieve_topicvec('path integral')





By default, the vectors are normalized. Another way to retrieve the topic vector
representation is as follow:

>>> autoencoder['linear algebra']





>>> autoencoder['path integral']





In the training and the retrieval above, the same preprocessing process is applied.
Users can provide their own preprocessor while initiating the topic modeler.

Users can save the trained models, by calling:

>>> autoencoder.save_compact_model('/path/to/sub_autoencoder8.bin')





And the model can be retrieved by calling:

>>> autoencoder2 = shorttext.generators.load_autoencoder_topicmodel('/path/to/sub_autoencoder8.bin')





Like other topic models, while initialize the instance of the topic modeler, the user can also specify
whether to weigh the terms using tf-idf (term frequency - inverse document frequency).
The default is to weigh. To not weigh, initialize it as:

>>> autoencoder3 = shorttext.generators.AutoencodingTopicModeler(toweigh=False)






Appendix: Unzipping Model I/O

For previous versions of shorttext, the trained models are saved by calling:

>>> autoencoder.savemodel('/path/to/sub_autoencoder8')





The following files are produced for the autoencoder:

/path/to/sub_autoencoder.json
/path/to/sub_autoencoder.gensimdict
/path/to/sub_autoencoder_encoder.json
/path/to/sub_autoencoder_encoder.h5
/path/to/sub_autoencoder_classtopicvecs.pkl





If specifying save_complete_autoencoder=True, then four more files are found:

/path/to/sub_autoencoder_decoder.json
/path/to/sub_autoencoder_decoder.h5
/path/to/sub_autoencoder_autoencoder.json
/path/to/sub_autoencoder_autoencoder.h5





Users can load the same model later by entering:

>>> autoencoder2 = shorttext.classifiers.load_autoencoder_topic('/path/to/sub_autoencoder8', compact=False)








Abstract Latent Topic Modeling Class

Both shorttext.generators.GensimTopicModeler and
shorttext.generators.AutoencodingTopicModeler extends
shorttext.generators.bow.LatentTopicModeling.LatentTopicModeler,
an abstract class virtually. If user wants to develop its own topic model that extends
this, he has to define the methods train, retrieve_topic_vec, loadmodel, and
savemodel.


Appendix: Namespaces for Topic Modeler in Previous Versions

All generative topic modeling algorithms were placed under the package shorttext.classifiers for version <=0.3.4.
In current version (>= 0.3.5), however, all generative models will be moved to shorttext.generators,
while any classifiers making use of these topic models are still kept under shorttext.classifiers.
A list include:

shorttext.classifiers.GensimTopicModeler  ->  shorttext.generators.GensimTopicModeler
shorttext.classifiers.LDAModeler  ->  shorttext.generators.LDAModeler
shorttext.classifiers.LSIModeler  ->  shorttext.generators.LSIModeler
shorttext.classifiers.RPModeler  ->  shorttext.generators.RPModeler
shorttext.classifiers.AutoencodingTopicModeler  ->  shorttext.generators.AutoencodingTopicModeler
shorttext.classifiers.load_gensimtopicmodel  ->  shorttext.generators.load_gensimtopicmodel
shorttext.classifiers.load_autoencoder_topic  ->  shorttext.generators.load_autoencoder_topicmodel





Before release 0.5.6, for backward compatibility, developers can still call the topic models as if there were no such changes,
although they are advised to make this change. However, effective release 0.5.7, this backward compatibility is no longer
available.




Classification Using Cosine Similarity

The topic modelers are trained to represent the short text in terms of a topic vector,
effectively the feature vector. However, to perform supervised classification, there
needs a classification algorithm. The first one is to calculate the cosine similarities
between topic vectors of the given short text with those of the texts in all class labels.

If there is already a trained topic modeler, whether it is
shorttext.generators.GensimTopicModeler or
shorttext.generators.AutoencodingTopicModeler,
a classifier based on cosine similarities can be initiated
immediately without training. Taking the LDA example above, such classifier can be initiated as follow:

>>> cos_classifier = shorttext.classifiers.TopicVectorCosineDistanceClassifier(topicmodeler)





Or if the user already saved the topic modeler, one can initiate the same classifier by
loading the topic modeler:

>>> cos_classifier = shorttext.classifiers.load_gensimtopicvec_cosineClassifier('/path/to/nihlda128.bin')





To perform prediction, enter:

>>> cos_classifier.score('stem cell research')





which outputs a dictionary with labels and the corresponding scores.

The same thing for autoencoder, but the classifier based on autoencoder can be loaded by another function:

>>> cos_classifier = shorttext.classifiers.load_autoencoder_cosineClassifier('/path/to/sub_autoencoder8.bin')







Classification Using Scikit-Learn Classifiers

The topic modeler can be used to generate features used for other machine learning
algorithms. We can take any supervised learning algorithms in scikit-learn here.
We use Gaussian naive Bayes as an example. For faster demonstration, use the subject
keywords as the example dataset.

>>> subtopicmodeler = shorttext.generators.LDAModeler()
>>> subtopicmodeler.train(subdict, 8)





We first import the class:

>>> from sklearn.naive_bayes import GaussianNB





And we train the classifier:

>>> classifier = shorttext.classifiers.TopicVectorSkLearnClassifier(subtopicmodeler, GaussianNB())
>>> classifier.train(subdict)





Predictions can be performed like the following example:

>>> classifier.score('functional integral')





which outputs a dictionary with labels and the corresponding scores.

You can save the model by:

>>> classifier.save_compact_model('/path/to/sublda8nb.bin')





where the argument specifies the prefix of the path of the model files, including the topic
models, and the scikit-learn model files. The classifier can be loaded by calling:

>>> classifier2 = shorttext.classifiers.load_gensim_topicvec_sklearnclassifier('/path/to/sublda8nb.bin')





The topic modeler here can also be an autoencoder, by putting subtopicmodeler as the autoencoder
will still do the work. However, to load the saved classifier with an autoencoder model, do

>>> classifier2 = shorttext.classifiers.load_autoencoder_topic_sklearnclassifier('/path/to/filename.bin')





Compact model files saved by TopicVectorSkLearnClassifier in shorttext >= 1.0.0 cannot be read
by earlier version of shorttext; vice versa is not true though: old compact model files can be read in.



Notes about Text Preprocessing

The topic models are based on bag-of-words model, and text preprocessing is very important.
However, the text preprocessing step cannot be serialized. The users should keep track of the
text preprocessing step on their own. Unless it is necessary, use the standard preprocessing.

See more: Text Preprocessing .



Reference

David M. Blei, “Probabilistic Topic Models,” Communications of the ACM 55(4): 77-84 (2012).

Francois Chollet, “Building Autoencoders in Keras,” The Keras Blog. [Keras [https://blog.keras.io/building-autoencoders-in-keras.html]]

Xuan Hieu Phan, Cam-Tu Nguyen, Dieu-Thu Le, Minh Le Nguyen, Susumu Horiguchi, Quang-Thuy Ha,
“A Hidden Topic-Based Framework toward Building Applications with Short Web Documents,”
IEEE Trans. Knowl. Data Eng. 23(7): 961-976 (2011).

Xuan Hieu Phan, Le-Minh Nguyen, Susumu Horiguchi, “Learning to Classify Short and Sparse Text & Web withHidden Topics from Large-scale Data Collections,”
WWW ‘08 Proceedings of the 17th international conference on World Wide Web. (2008) [ACL [http://dl.acm.org/citation.cfm?id=1367510]]

Home: Homepage of shorttext





            

          

      

      

    

  

    
      
          
            
  
Word Embedding Models


Word2Vec

The most commonly used word-embedding model is Word2Vec. Its model can be downloaded from
their page. To load the model, call:

>>> import shorttext
>>> wvmodel = shorttext.utils.load_word2vec_model('/path/to/GoogleNews-vectors-negative300.bin.gz')





It is a binary file, and the default is set to be binary=True.

It is equivalent to calling,

>>> import gensim
>>> wvmodel = gensim.models.KeyedVectors.load_word2vec_format('/path/to/GoogleNews-vectors-negative300.bin.gz', binary=True)





Word2Vec is a neural network model that embeds words into semantic vectors that carry semantic meaning.
It is easy to extract the vector of a word, like for the word ‘coffee’:

>>> wvmodel['coffee']   # an ndarray for the word will be output





One can find the most similar words to ‘coffee’ according to this model:

>>> wvmodel.most_similar('coffee')





which outputs:

[(u'coffees', 0.721267819404602),
 (u'gourmet_coffee', 0.7057087421417236),
 (u'Coffee', 0.6900454759597778),
 (u'o_joe', 0.6891065835952759),
 (u'Starbucks_coffee', 0.6874972581863403),
 (u'coffee_beans', 0.6749703884124756),
 (u'latt\xe9', 0.664122462272644),
 (u'cappuccino', 0.662549614906311),
 (u'brewed_coffee', 0.6621608138084412),
 (u'espresso', 0.6616827249526978)]





Or if you want to find the cosine similarity between ‘coffee’ and ‘tea’, enter:

>>> wvmodel.similarity('coffee', 'tea')   # outputs: 0.56352921707810621





Semantic meaning can be reflected by their differences. For example, we can vaguely
say Francis - Paris = Taiwan - Taipei, or man - actor = woman - actress.
Define first the cosine similarity for readability:

>>> from scipy.spatial.distance import cosine
>>> similarity = lambda u, v: 1-cosine(u, v)





Then

>>> similarity(wvmodel['France'] + wvmodel['Taipei'] - wvmodel['Taiwan'], wvmodel['Paris'])  # outputs: 0.70574580801216202
>>> similarity(wvmodel['woman'] + wvmodel['actor'] - wvmodel['man'], wvmodel['actress'])  # outputs: 0.876354245612604







GloVe

Stanford NLP Group developed a similar word-embedding algorithm, with a good theory explaining how
it works. It is extremely similar to Word2Vec.

One can convert a text-format GloVe model into a text-format Word2Vec model. More information can be found
in the documentation of gensim: Converting GloVe to Word2Vec [https://radimrehurek.com/gensim/scripts/glove2word2vec.html]



FastText

FastText is a similar word-embedding model from Facebook. You can download pre-trained models here:

Pre-trained word vectors [https://github.com/facebookresearch/fastText/blob/master/docs/pretrained-vectors.md]

To load a pre-trained FastText model, run:

>>> import shorttext
>>> ftmodel = shorttext.utils.load_fasttext_model('/path/to/model.bin')





And it is used exactly the same way as Word2Vec.



Poincaré Embeddings

Poincaré embeddings is a new embedding that learns both semantic similarity and hierarchical structures. To load a
pre-trained model, run:

>>> import shorttext
>>> pemodel = shorttext.utils.load_poincare_model('/path/to/model.txt')





For preloaded word-embedding models, please refer to Word Embedding Models.



BERT

BERT [https://arxiv.org/abs/1810.04805] (Bidirectional Transformers for Language Understanding)
is a transformer-based language model. This package supports tokens
and sentence embeddings using pre-trained language models, supported
by the package written by HuggingFace [https://huggingface.co/]. In shorttext, to run:

>>> from shorttext.utils import WrappedBERTEncoder
>>> encoder = WrappedBERTEncoder()   # the default model and tokenizer are loaded
>>> sentences_embedding, tokens_embedding, tokens = encoder.encode_sentences(['The car should turn right.', 'The answer is right.'])





The third line returns the embeddings of all sentences, embeddings of all tokens in each sentence,
and the tokens (with CLS and SEP) included. Unlike previous embeddings,
token embeddings depend on the context; in the above example, the embeddings of the
two “right“‘s are different as they have different meanings.

The default BERT models and tokenizers are bert-base_uncase.
If you want to use others, refer to HuggingFace’s model list [https://huggingface.co/models] .



Other Functions



Links


	Word2Vec [https://code.google.com/archive/p/word2vec/]


	GloVe [http://nlp.stanford.edu/projects/glove/]


	FastText [https://github.com/facebookresearch/fastText]


	BERT [https://arxiv.org/abs/1810.04805]


	HuggingFace [https://huggingface.co/]






Reference

Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova, “BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding,” arXiv:1810.04805 (2018). [arXiv [https://arxiv.org/abs/1810.04805]]

Jayant Jain, “Implementing Poincaré Embeddings,” RaRe Technologies (2017). [RaRe [https://rare-technologies.com/implementing-poincare-embeddings/#h2-2]]

Jeffrey Pennington, Richard Socher, Christopher D. Manning, “GloVe: Global Vectors for Word Representation,” Empirical Methods in Natural Language Processing (EMNLP), pp. 1532-1543 (2014). [PDF [http://www.aclweb.org/anthology/D14-1162]]

Maximilian Nickel, Douwe Kiela, “Poincaré Embeddings for Learning Hierarchical Representations,” arXiv:1705.08039 (2017). [arXiv [https://arxiv.org/abs/1705.08039]]

Piotr Bojanowski, Edouard Grave, Armand Joulin, Tomas Mikolov, “Enriching Word Vectors with Subword Information,” arXiv:1607.04606 (2016). [arXiv [https://arxiv.org/abs/1607.04606]]

Tomas Mikolov, Kai Chen, Greg Corrado, Jeffrey Dean, “Efficient Estimation of Word Representations in Vector Space,” ICLR 2013 (2013). [arXiv [https://arxiv.org/abs/1301.3781]]

Radim Řehůřek, “Making sense of word2vec,” RaRe Technologies (2014). [RaRe [https://rare-technologies.com/making-sense-of-word2vec/]]

“Probabilistic Theory of Word Embeddings: GloVe,” Everything About Data Analytics, WordPress (2016). [WordPress [https://datawarrior.wordpress.com/2016/07/25/probabilistic-theory-of-word-embeddings-glove/]]

“Toying with Word2Vec,” Everything About Data Analytics, WordPress (2015). [WordPress [https://datawarrior.wordpress.com/2015/10/25/codienerd-2-toying-with-word2vec/]]

“Word-Embedding Algorithms,” Everything About Data Analytics, WordPress (2016). [WordPress [https://datawarrior.wordpress.com/2016/05/15/word-embedding-algorithms/]]

Home: Homepage of shorttext





            

          

      

      

    

  

    
      
          
            
  
Word-Embedding Cosine Similarity Classifier


Sum of Embedded Vectors

Given a pre-trained word-embedding models like Word2Vec, a classifier
based on cosine similarities can be built, which is
shorttext.classifiers.SumEmbeddedVecClassifier.
In training the data,
the embedded vectors in every word in that class are averaged. The
score for a given text to each class is the cosine similarity between the averaged
vector of the given text and the precalculated vector of that class.

A pre-trained Google Word2Vec model can be downloaded here [https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit].

See: Word Embedding Models .

Import the package:

>>> import shorttext





To load the Word2Vec model,

>>> from shorttext.utils import load_word2vec_model
>>> wvmodel = load_word2vec_model('/path/to/GoogleNews-vectors-negative300.bin.gz')





Then we load a set of data:

>>> nihtraindata = shorttext.data.nihreports(sample_size=None)





Then initialize the classifier:

>>> classifier = shorttext.classifiers.SumEmbeddedVecClassifier(wvmodel)   # for Google model, the vector size is 300 (default: 100)
>>> classifier.train(nihtraindata)





This classifier takes relatively little time to train compared with others
in this package. Then we can perform classification:

>>> classifier.score('bioinformatics')





Or the result can be sorted and only the five top-scored results are displayed:

>>> sorted(classifier.score('stem cell research').items(), key=lambda item: item[1], reverse=True)[:5]
[('NIGMS', 0.44962596182682935),
 ('NIAID', 0.4494126990050461),
 ('NINDS', 0.43435236806719524),
 ('NIDCR', 0.43042338197002483),
 ('NHGRI', 0.42878346869968731)]
>>> sorted(classifier.score('bioinformatics').items(), key=lambda item: item[1], reverse=True)[:5]
[('NHGRI', 0.54200061864847038),
 ('NCATS', 0.49097267547279988),
 ('NIGMS', 0.47818129591411118),
 ('CIT', 0.46874987052158501),
 ('NLM', 0.46869259072562974)]
>>> sorted(classifier.score('cancer immunotherapy').items(), key=lambda item: item[1], reverse=True)[:5]
[('NCI', 0.53734097785976076),
 ('NIAID', 0.50616582142027433),
 ('NIDCR', 0.48596330887674788),
 ('NIDDK', 0.46875755765903215),
 ('NCCAM', 0.4642233792198418)]





The trained model can be saved:

>>> classifier.save_compact_model('/path/to/sumvec_nihdata_model.bin')





And with the same pre-trained Word2Vec model, this classifier can be loaded:

>>> classifier2 = shorttext.classifiers.load_sumword2vec_classifier(wvmodel, '/path/to/sumvec_nihdata_model.bin')






Appendix: Model I/O in Previous Versions

In previous versions of shorttext, shorttext.classifiers.SumEmbeddedVecClassifier has a savemodel method,
which runs as follow:

>>> classifier.savemodel('/path/to/nihdata')





This produces the following file for this model:

/path/to/nihdata_embedvecdict.pkl





It can be loaded by:

>>> classifier2 = shorttext.classifiers.load_sumword2vec_classifier(wvmodel, '/path/to/nihdata', compact=False)








Reference

Michael Czerny, “Modern Methods for Sentiment Analysis,” *District Data Labs (2015). [DistrictDataLabs [https://districtdatalabs.silvrback.com/modern-methods-for-sentiment-analysis]]

Home: Homepage of shorttext





            

          

      

      

    

  

    
      
          
            
  
Deep Neural Networks with Word-Embedding


Wrapper for Neural Networks for Word-Embedding Vectors

In this package, there is a class that serves a wrapper for various neural network algorithms
for supervised short text categorization:
shorttext.classifiers.VarNNEmbeddedVecClassifier.
Each class label has a few short sentences, where each token is converted
to an embedded vector, given by a pre-trained word-embedding model (e.g., Google Word2Vec model).
The sentences are represented by a matrix, or rank-2 array.
The type of neural network has to be passed when training, and it has to be of
type keras.models.Sequential. The number of outputs of the models has to match
the number of class labels in the training data.
To perform prediction, the input short sentences is converted to a unit vector
in the same way. The score is calculated according to the trained neural network model.

Some of the neural networks can be found within the module :module:`shorttext.classifiers.embed.nnlib.frameworks`
and they are good for short text or document classification. Of course, users can supply their
own neural networks, written in keras.

A pre-trained Google Word2Vec model can be downloaded here [https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit],
and a pre-trained Facebook FastText model can be downloaded here [https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md].

See: Word Embedding Models .

Import the package:

>>> import shorttext





To load the Word2Vec model,

>>> wvmodel = shorttext.utils.load_word2vec_model('/path/to/GoogleNews-vectors-negative300.bin.gz')





Then load the training data

>>> trainclassdict = shorttext.data.subjectkeywords()





Then we choose a neural network. We choose ConvNet:

>>> kmodel = shorttext.classifiers.frameworks.CNNWordEmbed(len(trainclassdict.keys()), vecsize=300)





Initialize the classifier:

>>> classifier = shorttext.classifiers.VarNNEmbeddedVecClassifier(wvmodel)





Then train the classifier:

>>> classifier.train(trainclassdict, kmodel)
Epoch 1/10
45/45 [==============================] - 0s - loss: 1.0578
Epoch 2/10
45/45 [==============================] - 0s - loss: 0.5536
Epoch 3/10
45/45 [==============================] - 0s - loss: 0.3437
Epoch 4/10
45/45 [==============================] - 0s - loss: 0.2282
Epoch 5/10
45/45 [==============================] - 0s - loss: 0.1658
Epoch 6/10
45/45 [==============================] - 0s - loss: 0.1273
Epoch 7/10
45/45 [==============================] - 0s - loss: 0.1052
Epoch 8/10
45/45 [==============================] - 0s - loss: 0.0961
Epoch 9/10
45/45 [==============================] - 0s - loss: 0.0839
Epoch 10/10
45/45 [==============================] - 0s - loss: 0.0743





Then the model is ready for classification, like:

>>> classifier.score('artificial intelligence')
{'mathematics': 0.57749695, 'physics': 0.33749574, 'theology': 0.085007325}





The trained model can be saved:

>>> classifier.save_compact_model('/path/to/nnlibvec_convnet_subdata.bin')





To load it, enter:

>>> classifier2 = shorttext.classifiers.load_varnnlibvec_classifier(wvmodel, '/path/to/nnlibvec_convnet_subdata.bin')







Provided Neural Networks

There are three neural networks available in this package for the use in
shorttext.classifiers.VarNNEmbeddedVecClassifier,
and they are available in the module shorttext.classifiers.frameworks.


ConvNet (Convolutional Neural Network)

This neural network for supervised learning is using convolutional neural network (ConvNet),
as demonstrated in Kim’s paper.

[image: _images/nnlib_cnn.png]
The function in the frameworks returns a keras.models.Sequential or keras.models.Model. Its input parameters are:

The parameter maxlen defines the maximum length of the sentences. If the sentence has less than maxlen
words, then the empty words will be filled with zero vectors.

>>> kmodel = fr.CNNWordEmbed(len(trainclassdict.keys()), vecsize=wvmodel.vector_size)







Double ConvNet

This neural network is nothing more than two ConvNet layers. The function in the frameworks returns a keras.models.Sequential or keras.models.Model. Its input parameters are:

The parameter maxlen defines the maximum length of the sentences. If the sentence has less than maxlen
words, then the empty words will be filled with zero vectors.

>>> kmodel = fr.DoubleCNNWordEmbed(len(trainclassdict.keys()), vecsize=wvmodel.vector_size)







C-LSTM (Convolutional Long Short-Term Memory)

This neural network for supervised learning is using C-LSTM, according to the paper
written by Zhou et. al. It is a neural network with ConvNet as the first layer,
and then followed by LSTM (long short-term memory), a type of recurrent neural network (RNN).

[image: _images/nnlib_clstm.png]
The function in the frameworks returns a keras.models.Sequential or keras.models.Model.

The parameter maxlen defines the maximum length of the sentences. If the sentence has less than maxlen
words, then the empty words will be filled with zero vectors.

>>> kmodel = fr.CLSTMWordEmbed(len(trainclassdict.keys()), vecsize=wvmodel.vector_size)







User-Defined Neural Network

Users can define their own neural network for use in the classifier wrapped by
shorttext.classifiers.VarNNEmbeddedVecClassifier
as long as the following criteria are met:


	the input matrix is numpy.ndarray, and of shape (maxlen, vecsize), where




maxlen is the maximum length of the sentence, and vecsize is the number of dimensions
of the embedded vectors. The output is a one-dimensional array, of size equal to
the number of classes provided by the training data. The order of the class labels is assumed
to be the same as the order of the given training data (stored as a Python dictionary).



Putting Word2Vec Model As an Input Keras Layer (Deprecated)

This functionality is removed since release 0.5.11, due to the following reasons:


	keras changed its code that produces this bug;


	the layer is consuming memory;


	only Word2Vec is supported; and


	the results are incorrect.







Reference

Chunting Zhou, Chonglin Sun, Zhiyuan Liu, Francis Lau, “A C-LSTM Neural Network for Text Classification,” (arXiv:1511.08630). [arXiv [https://arxiv.org/abs/1511.08630]]

“CS231n Convolutional Neural Networks for Visual Recognition,” Stanford Online Course. [link [http://cs231n.github.io/convolutional-networks/]]

Nal Kalchbrenner, Edward Grefenstette, Phil Blunsom, “A Convolutional Neural Network for Modelling Sentences,” Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, pp. 655-665 (2014). [arXiv [https://arxiv.org/abs/1404.2188]]

Tal Perry, “Convolutional Methods for Text,” Medium (2017). [Medium [https://medium.com/@TalPerry/convolutional-methods-for-text-d5260fd5675f]]

Yoon Kim, “Convolutional Neural Networks for Sentence Classification,” EMNLP 2014, 1746-1751 (arXiv:1408.5882). [arXiv [https://arxiv.org/abs/1408.5882]]

Zackary C. Lipton, John Berkowitz, “A Critical Review of Recurrent Neural Networks for Sequence Learning,” arXiv:1506.00019 (2015). [arXiv [https://arxiv.org/abs/1506.00019]]

Home: Homepage of shorttext





            

          

      

      

    

  

    
      
          
            
  
Maximum Entropy (MaxEnt) Classifier


Maxent

Maximum entropy (maxent) classifier has been a popular text classifier, by parameterizing the model
to achieve maximum categorical entropy, with the constraint that the resulting probability
on the training data with the model being equal to the real distribution.

The maxent classifier in shorttext is impleneted by keras. The optimization algorithm is
defaulted to be the Adam optimizer, although other gradient-based or momentum-based optimizers
can be used. The traditional methods such as generative iterative scaling (GIS) or
L-BFGS cannot be used here.

To use the maxent classifier, import the package:

>>> import shorttext
>>> from shorttext.classifiers import MaxEntClassifier





Loading NIH reports as an example:

>>> classdict = shorttext.data.nihreports()





The classifier can be instantiated by:

>>> classifier = MaxEntClassifier()





Train the classifier:

>>> classifier.train(classdict, nb_epochs=1000)





After training, it can be used for classification, such as

>>> classifier.score('cancer immunology')   # NCI tops the score
>>> classifier.score('children health')     # NIAID tops the score
>>> classifier.score('Alzheimer disease and aging')    # NIAID tops the score





To save the model,

>>> classifier.save_compact_model('/path/to/filename.bin')





To load the model to be a classifier, enter:

>>> classifier2 = shorttext.classifiers.load_maxent_classifier('/path/to/filename.bin')







Reference

Adam L. Berger, Stephen A. Della Pietra, Vincent J. Della Pietra, “A Maximum Entropy Approach to Natural Language Processing,” Computational Linguistics 22(1): 39-72 (1996). [ACM [http://dl.acm.org/citation.cfm?id=234289]]

Daniel E. Russ, Kwan-Yuet Ho, Joanne S. Colt, Karla R. Armenti, Dalsu Baris, Wong-Ho Chow, Faith Davis, Alison Johnson, Mark P. Purdue, Margaret R. Karagas, Kendra Schwartz, Molly Schwenn, Debra T. Silverman, Patricia A. Stewart, Calvin A. Johnson, Melissa C. Friesen, “Computer-based coding of free-text job descriptions to efficiently and reliably incorporate occupational risk factors into large-scale epidemiological studies”, Occup. Environ. Med. 73, 417-424 (2016). [BMJ [http://oem.bmj.com/content/73/6/417.long]]

Daniel Russ, Kwan-yuet Ho, Melissa Friesen, “It Takes a Village To Solve A Problem in Data Science,” Data Science Maryland, presentation at Applied Physics Laboratory (APL), Johns Hopkins University, on June 19, 2017. (2017) [Slideshare [https://www.slideshare.net/DataScienceMD/it-takes-a-village-to-solve-a-problem-in-data-science]]

Home: Homepage of shorttext





            

          

      

      

    

  

    
      
          
            
  
Character-Based Sequence-to-Sequence (seq2seq) Models

Since release 0.6.0, shorttext supports sequence-to-sequence (seq2seq) learning. While there is a general seq2seq class
behind, it provides a character-based seq2seq implementation.


Creating One-hot Vectors

To use it, create an instance of the class shorttext.generators.SentenceToCharVecEncoder:

>>> import numpy as np
>>> import shorttext
>>> from urllib.request import urlopen
>>> chartovec_encoder = shorttext.generators.initSentenceToCharVecEncoder(urlopen('http://norvig.com/big.txt', 'r'))





The above code is the same as Character to One-Hot Vector .



Training

Then we can train the model by creating an instance of shorttext.generators.CharBasedSeq2SeqGenerator:

>>> latent_dim = 100
>>> seq2seqer = shorttext.generators.CharBasedSeq2SeqGenerator(chartovec_encoder, latent_dim, 120)





And then train this neural network model:

>>> seq2seqer.train(text, epochs=100)





This model takes several hours to train on a laptop.



Decoding

After training, we can use this class as a generative model
of answering questions as a chatbot:

>>> seq2seqer.decode('Happy Holiday!')





It does not give definite answers because there is a stochasticity in the prediction.



Model I/O

This model can be saved by entering:

>>> seq2seqer.save_compact_model('/path/to/norvigtxt_iter5model.bin')





And can be loaded by:

>>> seq2seqer2 = shorttext.generators.seq2seq.charbaseS2S.loadCharBasedSeq2SeqGenerator('/path/to/norvigtxt_iter5model.bin')







Reference

Aurelien Geron, Hands-On Machine Learning with Scikit-Learn and TensorFlow (Sebastopol, CA: O’Reilly Media, 2017). [O'Reilly [http://shop.oreilly.com/product/0636920052289.do]]

Ilya Sutskever, James Martens, Geoffrey Hinton, “Generating Text with Recurrent Neural Networks,” ICML (2011). [UToronto [http://www.cs.utoronto.ca/~ilya/pubs/2011/LANG-RNN.pdf]]

Ilya Sutskever, Oriol Vinyals, Quoc V. Le, “Sequence to Sequence Learning with Neural Networks,” arXiv:1409.3215 (2014). [arXiv [https://arxiv.org/abs/1409.3215]]

Oriol Vinyals, Quoc Le, “A Neural Conversational Model,” arXiv:1506.05869 (2015). [arXiv [https://arxiv.org/abs/1506.05869]]

Tom Young, Devamanyu Hazarika, Soujanya Poria, Erik Cambria, “Recent Trends in Deep Learning Based Natural Language Processing,” arXiv:1708.02709 (2017). [arXiv [https://arxiv.org/abs/1708.02709]]

Zackary C. Lipton, John Berkowitz, “A Critical Review of Recurrent Neural Networks for Sequence Learning,” arXiv:1506.00019 (2015). [arXiv [https://arxiv.org/abs/1506.00019]]





            

          

      

      

    

  

    
      
          
            
  
Stacked Generalization

“Stacking generates the members of the stacking ensemble using several learning algorithms and subsequently
uses another algorithm to learn how to combine their outputs.” It combines the classification results
of several classifiers, and combines them.

Stacking is most commonly implemented using logistic regression.
Suppose there are K classifiers, and l output labels. Then the stacking generalization
is this logistic model:

\(P ( y=c | x) = \frac{1}{\exp\left( - \sum_{k=1}^{K} w_{kc} x_{kc} + b_c \right) + 1}\)

Here we demonstrate the use of stacking of two classifiers.

Import the package, and employ the subject dataset as the training dataset.

>>> import shorttext
>>> subdict = shorttext.data.subjectkeywords()





Train a C-LSTM model.

>>> wvmodel = shorttext.utils.load_word2vec_model('/path/to/GoogleNews-vectors-negative300.bin.gz')
>>> clstm_nnet = shorttext.classifiers.frameworks.CLSTMWordEmbed(len(subdict))
>>> clstm_classifier = shorttext.classifiers.VarNNEmbeddedVecClassifier(wvmodel)
>>> clstm_classifier.train(subdict, clstm_nnet)





A test of its classification:

>>> clstm_classifier.score('linear algebra')
{'mathematics': 1.0, 'physics': 3.3643366e-10, 'theology': 1.0713742e-13}
>>> clstm_classifier.score('topological soliton')
{'mathematics': 2.0036438e-11, 'physics': 1.0, 'theology': 4.4903334e-14}





And we train an SVM, with topic vectors as the input vectors. The topic model is LDA with 128 topics.

>>> # train the LDA topic model
>>> lda128 = shorttext.classifiers.LDAModeler()
>>> lda128.train(subdict, 128)
>>> # train the SVM classifier
>>> from sklearn.svm import SVC
>>> lda128_svm_classifier = shorttext.classifiers.TopicVectorSkLearnClassifier(lda128, SVC())
>>> lda128_svm_classifier.train(subdict)





A test of its classification:

>>>  lda128_svm_classifier.score('linear algebra')
{'mathematics': 1.0, 'physics': 0.0, 'theology': 0.0}
>>> lda128_svm_classifier.score('topological soliton')
{'mathematics': 0.0, 'physics': 1.0, 'theology': 0.0}





Then we can implement the stacked generalization using logistic regression by calling:

>>> stacker = shorttext.stack.LogisticStackedGeneralization(intermediate_classifiers={'clstm': clstm_classifier, 'lda128': lda128_svm_classifier})
>>> stacker.train(subdict)





Now the model is ready. As a result, we can do the stacked classification:

>>> stacker.score('linear algebra')
{'mathematics': 0.55439126, 'physics': 0.036988281, 'theology': 0.039665185}
>>> stacker.score('quantum mechanics')
{'mathematics': 0.059210967, 'physics': 0.55031472, 'theology': 0.04532773}
>>> stacker.score('topological dynamics')
{'mathematics': 0.17244603, 'physics': 0.19720334, 'theology': 0.035309207}
>>> stacker.score('christology')
 {'mathematics': 0.094574735, 'physics': 0.053406414, 'theology': 0.3797417}





The stacked generalization can be saved by calling:

>>> stacker.save_compact_model('/path/to/logitmodel.bin')





This only saves the stacked generalization model, but not the intermediate classifiers.
The reason for this is for allowing flexibility for users to supply their own algorithms,
as long as they have the score functions which output the same way as the classifiers
offered in this package. To load them, initialize it in the same way:

>>> stacker2 = shorttext.stack.LogisticStackedGeneralization(intermediate_classifiers={'clstm': clstm_classifier, 'lda128': lda128_svm_classifier})
>>> stacker2.load_compact_model('/path/to/logitmodel.bin')






Reference

“Combining the Best of All Worlds,” Everything About Data Analytics, WordPress (2016). [WordPress [https://datawarrior.wordpress.com/2016/06/19/combining-the-best-of-all-worlds/]]

David H. Wolpert, “Stacked Generalization,” Neural Netw 5: 241-259 (1992).

M. Paz Sesmero, Agapito I. Ledezma, Araceli Sanchis, “Generating ensembles of heterogeneous classifiers using Stacked Generalization,”
WIREs Data Mining and Knowledge Discovery 5: 21-34 (2015).

Home: Homepage of shorttext





            

          

      

      

    

  

    
      
          
            
  
Metrics

The package shorttext provides a few metrics that measure the distances of some kind. They are all
under :module:`shorttext.metrics`. The soft Jaccard score is based on spellings, and the Word Mover’s
distance (WMD) embedded word vectors.


Edit Distance and Soft Jaccard Score

Edit distance, or Damerau-Levenshtein distance, measures the differences
between two words due to insertion, deletion, transposition, substitution etc.
Each of this change causes a distance of 1. The algorithm was written in C.

First import the package:

>>> from shorttext.metrics.dynprog import damerau_levenshtein, longest_common_prefix, similarity, soft_jaccard_score





The distance can be calculated by:

>>> damerau_levenshtein('diver', 'driver')        # insertion, gives 1
>>> damerau_levenshtein('driver', 'diver')        # deletion, gives 1
>>> damerau_levenshtein('topology', 'tooplogy')   # transposition, gives 1
>>> damerau_levenshtein('book', 'blok')           # subsitution, gives 1





The longest common prefix finds the length of common prefix:

>>> longest_common_prefix('topology', 'topological')    # gives 7
>>> longest_common_prefix('police', 'policewoman')      # gives 6





The similarity between words is defined as the larger of the following:

\(s = 1 - \frac{\text{DL distance}}{\max( \text(len(word1)), \text(len(word2)) )}\)
and
\(s = \frac{\text{longest common prefix}}{\max( \text(len(word1)), \text(len(word2)) )}\)

>>> similarity('topology', 'topological')    # gives 0.6363636363636364
>>> similarity('book', 'blok')               # gives 0.75





Given the similarity, we say that the intersection, for example, between ‘book’ and ‘blok’, has 0.75 elements, or the
union has 1.25 elements. Then the similarity between two sets of tokens can be measured using Jaccard index, with this
“soft” numbers of intersection. Therefore,

>>> soft_jaccard_score(['book', 'seller'], ['blok', 'sellers'])     # gives 0.6716417910447762
>>> soft_jaccard_score(['police', 'station'], ['policeman'])        # gives 0.2857142857142858





The functions damerau_levenshtein and longest_common_prefix are implemented using Cython [http://cython.org/] .
(Before release 0.7.2, they were interfaced to Python using SWIG [http://www.swig.org/] (Simplified Wrapper and Interface Generator)).



Word Mover’s Distance

Unlike soft Jaccard score that bases similarity on the words’ spellings, Word Mover’s distance (WMD)
the embedded word vectors. WMD is a special case for Earth Mover’s distance (EMD), or Wasserstein
distance. The calculation of WMD in this package is based on linear programming, and the distance between
words are the Euclidean distance by default (not cosine distance), but user can set it accordingly.

Import the modules, and load the word-embedding models:

>>> from shorttext.metrics.wasserstein import word_mover_distance
>>> from shorttext.utils import load_word2vec_model
>>> wvmodel = load_word2vec_model('/path/to/model_file.bin')





Examples:

>>> word_mover_distance(['police', 'station'], ['policeman'], wvmodel)                      # gives 3.060708999633789
>>> word_mover_distance(['physician', 'assistant'], ['doctor', 'assistants'], wvmodel)      # gives 2.276337146759033





More examples can be found in this IPython Notebook [https://github.com/stephenhky/PyWMD/blob/master/WordMoverDistanceDemo.ipynb] .

In gensim, the Word2Vec model allows the calculation of WMD if user installed the package PyEMD [https://github.com/wmayner/pyemd]. It is based on the
scale invariant feature transform (SIFT), an algorithm for EMD based on L1-distance (Manhattan distance).
For more details,
please refer to their tutorial [https://radimrehurek.com/gensim/models/keyedvectors.html] , and cite the two papers by Ofir Pele and Michael Werman
if it is used.



Jaccard Index Due to Cosine Distances

In the above section of edit distance, the Jaccard score was calculated by considering soft membership
using spelling. However, we can also compute the soft membership by cosine similarity with

>>> from shorttext.utils import load_word2vec_model
>>> wvmodel = load_word2vec_model('/path/to/model_file.bin')
>>> from shorttext.metrics.embedfuzzy import jaccardscore_sents





For example, the number of words between the set containing ‘doctor’ and that containing ‘physician’
is 0.78060223420956831 (according to Google model), and therefore the Jaccard score is

\(0.78060223420956831 / (2-0.78060223420956831) = 0.6401538990056869\)

And it can be seen by running it:

>>> jaccardscore_sents('doctor', 'physician', wvmodel)   # gives 0.6401538990056869
>>> jaccardscore_sents('chief executive', 'computer cluster', wvmodel)   # gives 0.0022515450768836143
>>> jaccardscore_sents('topological data', 'data of topology', wvmodel)   # gives 0.67588977344632573







BERTScore

BERTScore includes a category of metrics that is based on BERT model.
This metrics measures the similarity between sentences. To use it,

>>> from shorttext.metrics.transformers import BERTScorer
>>> scorer = BERTScorer()    # using default BERT model and tokenizer
>>> scorer.recall_bertscore('The weather is cold.', 'It is freezing.')   # 0.7223385572433472
>>> scorer.precision_bertscore('The weather is cold.', 'It is freezing.')   # 0.7700849175453186
>>> scorer.f1score_bertscore('The weather is cold.', 'It is freezing.')   # 0.7454479746418043





For BERT models, please refer to Word Embedding Models for more details.



Reference

“Damerau-Levenshtein Distance.” [Wikipedia [https://en.wikipedia.org/wiki/Damerau%E2%80%93Levenshtein_distance]]

“Jaccard index.” [Wikipedia [https://en.wikipedia.org/wiki/Jaccard_index]]

Daniel E. Russ, Kwan-Yuet Ho, Calvin A. Johnson, Melissa C. Friesen, “Computer-Based Coding of Occupation Codes for Epidemiological Analyses,” 2014 IEEE 27th International Symposium on Computer-Based Medical Systems (CBMS), pp. 347-350. (2014) [IEEE [http://ieeexplore.ieee.org/abstract/document/6881904/]]

Matt J. Kusner, Yu Sun, Nicholas I. Kolkin, Kilian Q. Weinberger, “From Word Embeddings to Document Distances,” ICML (2015).

Ofir Pele, Michael Werman, “A linear time histogram metric for improved SIFT matching,” Computer Vision - ECCV 2008, 495-508 (2008). [ACM [http://dl.acm.org/citation.cfm?id=1478212]]

Ofir Pele, Michael Werman, “Fast and robust earth mover’s distances,” Proc. 2009 IEEE 12th Int. Conf. on Computer Vision, 460-467 (2009). [IEEE [http://ieeexplore.ieee.org/document/5459199/]]

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q. Weinberger, Yoav Artzi,
“BERTScore: Evaluating Text Generation with BERT,” arXiv:1904.09675 (2019). [arXiv [https://arxiv.org/abs/1904.09675]]

“Word Mover’s Distance as a Linear Programming Problem,” Everything About Data Analytics, WordPress (2017). [WordPress [https://datawarrior.wordpress.com/2017/08/16/word-movers-distance-as-a-linear-programming-problem/]]

Home: Homepage of shorttext





            

          

      

      

    

  

    
      
          
            
  
Spell Correctors

This package supports the use of spell correctors, because typos are very common in relatively short text data.

There are two types of spell correctors provided: the one described by Peter Norvig (using n-grams Bayesian method),
and another by Keisuke Sakaguchi and his colleagues (using semi-character level recurrent neural network).

>>> import shorttext





We use the Norvig’s training corpus as an example. To load it,

>>> from urllib.request import urlopen
>>> text = urlopen('https://norvig.com/big.txt').read()





The developer just has to instantiate the spell corrector, and then train it with a corpus to get a correction model.
Then one can use it for correction.


Norvig

Peter Norvig described a spell corrector based on Bayesian approach and edit distance. You can refer to his blog for
more information.

>>> norvig_corrector = shorttext.spell.NorvigSpellCorrector()
>>> norvig_corrector.train(text)
>>> norvig_corrector.correct('oranhe')   # gives "orange"







Sakaguchi (SCRNN - semi-character recurrent neural network)

Keisuke Sakaguchi and his colleagues developed this spell corrector with the insight that most of the typos happen
in between the spellings. They developed a recurrent neural network that trains possible change within the spellings. There are
six modes:


	JUMBLE-WHOLE


	JUMBLE-BEG


	JUMBLE-END


	JUMBLE-INT


	NOISE-INSERT


	NOISE-DELETE


	NOISE-REPLACE




The original intent of their work was not to invent a new spell corrector but to study the “Cmabrigde Uinervtisy” effect,
but it is nice to see how it can be implemented as a spell corrector.

>>> scrnn_corrector = shorttext.spell.SCRNNSpellCorrector('JUMBLE-WHOLE')
>>> scrnn_corrector.train(text)
>>> scrnn_corrector.correct('oranhe')   # gives "orange"





We can persist the SCRNN corrector for future use:

>>> scrnn_corrector.save_compact_model('/path/to/spellscrnn.bin')





To load,

>>> corrector = shorttext.spell.loadSCRNNSpellCorrector('/path/to/spellscrnn.bin')







Reference

Keisuke Sakaguchi, Kevin Duh, Matt Post, Benjamin Van Durme, “Robsut Wrod Reocginiton via semi-Character Recurrent Neural Networ,” arXiv:1608.02214 (2016). [arXiv [https://arxiv.org/abs/1608.02214]]

Peter Norvig, “How to write a spell corrector.” (2016) [Norvig [https://norvig.com/spell-correct.html]]





            

          

      

      

    

  

    
      
          
            
  
Console Scripts

This package provides two scripts.

The development of the scripts is not stable yet, and more scripts will be added.


ShortTextCategorizerConsole

usage: ShortTextCategorizerConsole [-h] [--wv WV] [--vecsize VECSIZE]
                                   [--topn TOPN] [--inputtext INPUTTEXT]
                                   model_filepath

Perform prediction on short text with a given trained model.

positional arguments:
  model_filepath        Path of the trained (compact) model.

optional arguments:
  -h, --help            show this help message and exit
  --wv WV               Path of the pre-trained Word2Vec model. (None if not
                        needed)
  --vecsize VECSIZE     Vector dimensions. (Default: 300)
  --topn TOPN           Number of top-scored results displayed. (Default: 10)
  --inputtext INPUTTEXT
                        single input text for classification. Run console if
                        set to None. (Default: None)







ShortTextWordEmbedSimilarity

usage: ShortTextWordEmbedSimilarity [-h] [--type TYPE] modelpath

Find the similarities between two short sentences using Word2Vec.

positional arguments:
  modelpath    Path of the Word2Vec model

optional arguments:
  -h, --help   show this help message and exit
  --type TYPE  Type of word-embedding model (default: "word2vec"; other
               options: "fasttext", "poincare")







WordEmbedAPI

usage: WordEmbedAPI [-h] [--port PORT] [--embedtype EMBEDTYPE] [--debug]
                    filepath

Load word-embedding models into memory.

positional arguments:
  filepath              file path of the word-embedding model

optional arguments:
  -h, --help            show this help message and exit
  --port PORT           port number
  --embedtype EMBEDTYPE
                        type of word-embedding algorithm (default: "word2vec),
                        allowing "word2vec", "fasttext", and "poincare"
  --debug               Debug mode (Default: False)





Home: Homepage of shorttext





            

          

      

      

    

  

    
      
          
            
  
API

API unlisted in tutorials are listed here.


Shorttext Models Smart Loading



Supervised Classification using Word Embedding


Module shorttext.generators.seq2seq.s2skeras



Module shorttext.classifiers.embed.sumvec.VarNNSumEmbedVecClassification




Neural Networks


Module shorttext.classifiers.embed.sumvec.frameworks




Utilities


Module shorttext.utils.kerasmodel_io



Module shorttext.utils.gensim_corpora



Module shorttext.utils.compactmodel_io




Metrics


Module shorttext.metrics.dynprog



Module shorttext.metrics.wassersterin




Spell Correction


Module shorttext.spell

Home: Homepage of shorttext






            

          

      

      

    

  

    
      
          
            
  
Frequently Asked Questions (FAQ)

Q1. Can we use TensorFlow backend?

Ans: Yes, users can use TensorFlow and CNTK backend instead of Theano backend. Refer to Keras Backend [https://keras.io/backend/] for information about switching backends.

Q2. Can we use word-embedding algorithms other than Word2Vec?

Ans: Yes. Besides Word2Vec, you can use FastText and Poincaré embedding. See: Word Embedding Models .

Q3. Can this package work on Python 3?


	Ans: Since release 1.0.0, this package can be run in Python 2.7, 3.5, and 3.6. (Before that, it operates only under Python 2.7.)
	Since release 1.0.7, this package can also be run in Python 3.7 as well.





Q4. Warning or messages pop up when running models involving neural networks. What is the problem?

Ans: Make sure your keras have version >= 2.

Q5. How should I cite `shorttext` if I use it in my research?

Ans: For the time being, You do not have to cite a particular paper for using this package.
However, if you use any particular functions or class, check out the docstring. If there is a paper (or papers)
mentioned, cite those papers. For example, if you use CNNWordEmbed in frameworks [https://github.com/stephenhky/PyShortTextCategorization/blob/master/shorttext/classifiers/embed/nnlib/frameworks.py],
according to the docstring, cite Yoon Kim’s paper. Refer to this documentation for the reference too.

Q6. Is there any reasons why word-embedding keras layers no longer used since release 0.5.11?

Ans: This functionality is removed since release 0.5.11, due to the following reasons:


	keras changed its code that produces this bug;


	the layer is consuming memory;


	only Word2Vec is supported; and


	the results are incorrect.




Q7. I am having trouble in install `shorttext` on Google Cloud Platform. What should I do?

Ans: There is no “Python.h”. Run: sudo apt-get install python3-dev in SSH shell of the VM instance.

Home: Homepage of shorttext




            

          

      

      

    

  

    
      
          
            
  
References

Adam L. Berger, Stephen A. Della Pietra, Vincent J. Della Pietra, “A Maximum Entropy Approach to Natural Language Processing,” Computational Linguistics 22(1): 39-72 (1996). [ACM [http://dl.acm.org/citation.cfm?id=234289]]

Aurelien Geron, Hands-On Machine Learning with Scikit-Learn and TensorFlow (Sebastopol, CA: O’Reilly Media, 2017). [O'Reilly [http://shop.oreilly.com/product/0636920052289.do]]

Chinmaya Pancholi, “Gensim integration with scikit-learn and Keras,” Google Summer of Codes (GSoC) proposal (2017). [Github [https://github.com/numfocus/gsoc/blob/master/2017/proposals/Chinmaya_Pancholi.md]]

Chinmaya Pancholi, “Chinmaya’s GSoC 2017 Summary: Integration with sklearn & Keras and implementing fastText,” RaRe Incubator (September 2, 2017). [RaRe [https://rare-technologies.com/chinmayas-gsoc-2017-summary-integration-with-sklearn-keras-and-implementing-fasttext/]]

Christopher Manning, Hinrich Schütze, Foundations of Statistical Natural Language Processing (Cambridge, MA: MIT Press, 1999). [MIT Press [https://mitpress.mit.edu/books/foundations-statistical-natural-language-processing]]

Christopher D. Manning, Prabhakar Raghavan, Hinrich Schütze, Introduction to Information Retrieval (Cambridge, MA: Cambridge University Press, 2008). [StanfordNLP [http://nlp.stanford.edu/IR-book/]]

Chunting Zhou, Chonglin Sun, Zhiyuan Liu, Francis Lau, “A C-LSTM Neural Network for Text Classification,” (arXiv:1511.08630). [arXiv [https://arxiv.org/abs/1511.08630]]

Daniel E. Russ, Kwan-Yuet Ho, Calvin A. Johnson, Melissa C. Friesen, “Computer-Based Coding of Occupation Codes for Epidemiological Analyses,” 2014 IEEE 27th International Symposium on Computer-Based Medical Systems (CBMS), pp. 347-350. (2014) [IEEE [http://ieeexplore.ieee.org/abstract/document/6881904/]]

Daniel E. Russ, Kwan-Yuet Ho, Joanne S. Colt, Karla R. Armenti, Dalsu Baris, Wong-Ho Chow, Faith Davis, Alison Johnson, Mark P. Purdue, Margaret R. Karagas, Kendra Schwartz, Molly Schwenn, Debra T. Silverman, Patricia A. Stewart, Calvin A. Johnson, Melissa C. Friesen, “Computer-based coding of free-text job descriptions to efficiently and reliably incorporate occupational risk factors into large-scale epidemiological studies”, Occup. Environ. Med. 73, 417-424 (2016). [BMJ [http://oem.bmj.com/content/73/6/417.long]]

Daniel Russ, Kwan-yuet Ho, Melissa Friesen, “It Takes a Village To Solve A Problem in Data Science,” Data Science Maryland, presentation at Applied Physics Laboratory (APL), Johns Hopkins University, on June 19, 2017. (2017) [Slideshare [https://www.slideshare.net/DataScienceMD/it-takes-a-village-to-solve-a-problem-in-data-science]]

David H. Wolpert, “Stacked Generalization,” Neural Netw 5: 241-259 (1992).

David M. Blei, “Probabilistic Topic Models,” Communications of the ACM 55(4): 77-84 (2012). [ACM [http://dl.acm.org/citation.cfm?id=2133826]]

Francois Chollet, “A ten-minute introduction to sequence-to-sequence learning in Keras,” The Keras Blog. [Keras [https://blog.keras.io/a-ten-minute-introduction-to-sequence-to-sequence-learning-in-keras.html]]

Francois Chollet, “Building Autoencoders in Keras,” The Keras Blog. [Keras [https://blog.keras.io/building-autoencoders-in-keras.html]]

Hsiang-Fu Yu, Chia-Hua Ho, Yu-Chin Juan, Chih-Jen Lin, “LibShortText: A Library for Short-text Classification.” [NTU [https://www.csie.ntu.edu.tw/~cjlin/libshorttext/]]

Ilya Sutskever, James Martens, Geoffrey Hinton, “Generating Text with Recurrent Neural Networks,” ICML (2011). [UToronto [http://www.cs.utoronto.ca/~ilya/pubs/2011/LANG-RNN.pdf]]

Ilya Sutskever, Oriol Vinyals, Quoc V. Le, “Sequence to Sequence Learning with Neural Networks,” arXiv:1409.3215 (2014). [arXiv [https://arxiv.org/abs/1409.3215]]

Jayant Jain, “Implementing Poincaré Embeddings,” RaRe Technologies (2017). [RaRe [https://rare-technologies.com/implementing-poincare-embeddings/#h2-2]]

Jeffrey Pennington, Richard Socher, Christopher D. Manning, “GloVe: Global Vectors for Word Representation,” Empirical Methods in Natural Language Processing (EMNLP), pp. 1532-1543 (2014). [PDF [http://www.aclweb.org/anthology/D14-1162]]

Keisuke Sakaguchi, Kevin Duh, Matt Post, Benjamin Van Durme, “Robsut Wrod Reocginiton via semi-Character Recurrent Neural Networ,” arXiv:1608.02214 (2016). [arXiv [https://arxiv.org/abs/1608.02214]]

“Keras 2.0 Release Notes.” (2017) [Github [https://github.com/fchollet/keras/wiki/Keras-2.0-release-notes/]]

Matt J. Kusner, Yu Sun, Nicholas I. Kolkin, Kilian Q. Weinberger, “From Word Embeddings to Document Distances,” ICML (2015).

Maximilian Nickel, Douwe Kiela, “Poincaré Embeddings for Learning Hierarchical Representations,” arXiv:1705.08039 (2017). [arXiv [https://arxiv.org/abs/1705.08039]]

Michael Czerny, “Modern Methods for Sentiment Analysis,” *District Data Labs (2015). [DistrictDataLabs [https://districtdatalabs.silvrback.com/modern-methods-for-sentiment-analysis]]

M. Paz Sesmero, Agapito I. Ledezma, Araceli Sanchis, “Generating ensembles of heterogeneous classifiers using Stacked Generalization,”
WIREs Data Mining and Knowledge Discovery 5: 21-34 (2015).

Nal Kalchbrenner, Edward Grefenstette, Phil Blunsom, “A Convolutional Neural Network for Modelling Sentences,” Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, pp. 655-665 (2014). [arXiv [https://arxiv.org/abs/1404.2188]]

Oriol Vinyals, Quoc Le, “A Neural Conversational Model,” arXiv:1506.05869 (2015). [arXiv [https://arxiv.org/abs/1506.05869]]

Peter Norvig, “How to write a spell corrector.” (2016) [Norvig [https://norvig.com/spell-correct.html]]

Piotr Bojanowski, Edouard Grave, Armand Joulin, Tomas Mikolov, “Enriching Word Vectors with Subword Information,” arXiv:1607.04606 (2016). [arXiv [https://arxiv.org/abs/1607.04606]]

Radim Rehurek, Petr Sojka, “Software Framework for Topic Modelling with Large Corpora,” In Proceedings of LREC 2010 workshop New Challenges for NLP Frameworks (2010). [ResearchGate [https://www.researchgate.net/publication/255820377_Software_Framework_for_Topic_Modelling_with_Large_Corpora]]

Sebastian Ruder, “An overview of gradient descent optimization algorithms,” blog of Sebastian Ruder, arXiv:1609.04747 (2016). [Ruder [http://sebastianruder.com/optimizing-gradient-descent/] or arXiv [https://arxiv.org/abs/1609.04747]]

Tal Perry, “Convolutional Methods for Text,” Medium (2017). [Medium [https://medium.com/@TalPerry/convolutional-methods-for-text-d5260fd5675f]]

Thomas W. Jones, “textmineR: Functions for Text Mining and Topic Modeling,” CRAN Project. [CRAN [https://cran.r-project.org/web/packages/textmineR/index.html] or Github [https://github.com/TommyJones/textmineR]]

Tomas Mikolov, Kai Chen, Greg Corrado, Jeffrey Dean, “Efficient Estimation of Word Representations in Vector Space,” ICLR 2013 (2013). [arXiv [https://arxiv.org/abs/1301.3781]]

Tom Young, Devamanyu Hazarika, Soujanya Poria, Erik Cambria, “Recent Trends in Deep Learning Based Natural Language Processing,” arXiv:1708.02709 (2017). [arXiv [https://arxiv.org/abs/1708.02709]]

Xuan Hieu Phan, Cam-Tu Nguyen, Dieu-Thu Le, Minh Le Nguyen, Susumu Horiguchi, Quang-Thuy Ha,
“A Hidden Topic-Based Framework toward Building Applications with Short Web Documents,”
IEEE Trans. Knowl. Data Eng. 23(7): 961-976 (2011).

Xuan Hieu Phan, Le-Minh Nguyen, Susumu Horiguchi, “Learning to Classify Short and Sparse Text & Web withHidden Topics from Large-scale Data Collections,”
WWW ‘08 Proceedings of the 17th international conference on World Wide Web. (2008) [ACL [http://dl.acm.org/citation.cfm?id=1367510]]

Yoon Kim, “Convolutional Neural Networks for Sentence Classification,” EMNLP 2014, 1746-1751 (arXiv:1408.5882). [arXiv [https://arxiv.org/abs/1408.5882]]

Zackary C. Lipton, John Berkowitz, “A Critical Review of Recurrent Neural Networks for Sequence Learning,” arXiv:1506.00019 (2015). [arXiv [https://arxiv.org/abs/1506.00019]]

Home: Homepage of shorttext




            

          

      

      

    

  

    
      
          
            
  
Links


Project Codes and Package


	Github [https://github.com/stephenhky/PyShortTextCategorization]


	PyPI [https://pypi.org/project/shorttext/]






Issues

To report bugs and issues, please go to Issues [https://github.com/stephenhky/PyShortTextCategorization/issues].



Gensim Incubator

Chinmaya Pancholi, a student in Indian Institute of Technology, Kharagpur, is supported
by Google Summer of Code (GSoC) project to support the open-source project for gensim.
Part of his project is to employ the wrapping ideas in shorttext to integrate keras,
scikit-learn and gensim.

Chinmaya’s blog posts: https://rare-technologies.com/author/chinmaya/

Chinmaya’s proposal for GSoC: https://github.com/numfocus/gsoc/blob/master/2017/proposals/Chinmaya_Pancholi.md



Blog Entries

“R or Python on Text Mining,” Everything About Data Analytics, WordPress (2015). [WordPress [https://datawarrior.wordpress.com/2015/08/12/codienerd-1-r-or-python-on-text-mining]]

“Short Text Categorization using Deep Neural Networks and Word-Embedding Models,” Everything About Data Analytics, WordPress (2015). [WordPress [https://datawarrior.wordpress.com/2016/10/12/short-text-categorization-using-deep-neural-networks-and-word-embedding-models/]]
(A code demonstration can be found in an early version of the Github repository for this package: here [https://github.com/stephenhky/PyShortTextCategorization/tree/b298d3ce7d06a9b4e0f7d32f27bab66064ba7afa])

“Toying with Word2Vec,” Everything About Data Analytics, WordPress (2015). [WordPress [https://datawarrior.wordpress.com/2015/10/25/codienerd-2-toying-with-word2vec/]]

“Probabilistic Theory of Word Embeddings: GloVe,” Everything About Data Analytics, WordPress (2016). [WordPress [https://datawarrior.wordpress.com/2016/07/25/probabilistic-theory-of-word-embeddings-glove/]]

“Word-Embedding Algorithms,” Everything About Data Analytics, WordPress (2016). [WordPress [https://datawarrior.wordpress.com/2016/05/15/word-embedding-algorithms/]]

“Python Package for Short Text Mining,” Everything About Data Analytics, WordPress (2016). [WordPress [https://datawarrior.wordpress.com/2016/12/22/python-package-for-short-text-mining/]]

“Short Text Mining using Advanced Keras Layers and Maxent: shorttext 0.4.1,” Everything About Data Analytics, WordPress (2017). [WordPress [https://datawarrior.wordpress.com/2017/07/30/short-text-mining-using-advanced-keras-layers-and-maxent-shorttext-0-4-1/]]

“Word Mover’s Distance as a Linear Programming Problem,” Everything About Data Analytics, WordPress (2017). [WordPress [https://datawarrior.wordpress.com/2017/08/16/word-movers-distance-as-a-linear-programming-problem/]]

“Release of shorttext 0.5.4,” Everything About Data Analytics, WordPress (2017). [WordPress [https://datawarrior.wordpress.com/2017/09/08/release-of-shorttext-0-5-4/]]

“Document-Term Matrix: Text Mining in R and Python,” Everything About Data Analytics, WordPress (2018). [WordPress [https://datawarrior.wordpress.com/2018/01/22/document-term-matrix-text-mining-in-r-and-python/]]

“Package shorttext 1.0.0 Released,” Medium (2018). [Medium [https://medium.com/@stephenhky/package-shorttext-1-0-0-released-ca3cb24d0ff3]]

Home: Homepage of shorttext





            

          

      

      

    

  

    
      
          
            
  
News


	12/21/2023: shorttext 1.6.1 released.


	08/26/2023: shorttext 1.6.0 released.


	06/19/2023: shorttext 1.5.9 released.


	09/23/2022: shorttext 1.5.8 released.


	09/22/2022: shorttext 1.5.7 released.


	08/29/2022: shorttext 1.5.6 released.


	05/28/2022: shorttext 1.5.5 released.


	12/15/2021: shorttext 1.5.4 released.


	07/11/2021: shorttext 1.5.3 released.


	07/06/2021: shorttext 1.5.2 released.


	04/10/2021: shorttext 1.5.1 released.


	04/09/2021: shorttext 1.5.0 released.


	02/11/2021: shorttext 1.4.8 released.


	01/11/2021: shorttext 1.4.7 released.


	01/03/2021: shorttext 1.4.6 released.


	12/28/2020: shorttext 1.4.5 released.


	12/24/2020: shorttext 1.4.4 released.


	11/10/2020: shorttext 1.4.3 released.


	10/18/2020: shorttext 1.4.2 released.


	09/23/2020: shorttext 1.4.1 released.


	09/02/2020: shorttext 1.4.0 released.


	07/23/2020: shorttext 1.3.0 released.


	06/05/2020: shorttext 1.2.6 released.


	05/20/2020: shorttext 1.2.5 released.


	05/13/2020: shorttext 1.2.4 released.


	04/28/2020: shorttext 1.2.3 released.


	04/07/2020: shorttext 1.2.2 released.


	03/23/2020: shorttext 1.2.1 released.


	03/21/2020: shorttext 1.2.0 released.


	12/01/2019: shorttext 1.1.6 released.


	09/24/2019: shorttext 1.1.5 released.


	07/20/2019: shorttext 1.1.4 released.


	07/07/2019: shorttext 1.1.3 released.


	06/05/2019: shorttext 1.1.2 released.


	04/23/2019: shorttext 1.1.1 released.


	03/03/2019: shorttext 1.1.0 released.


	02/14/2019: shorttext 1.0.8 released.


	01/30/2019: shorttext 1.0.7 released.


	01/29/2019: shorttext 1.0.6 released.


	01/13/2019: shorttext 1.0.5 released.


	10/03/2018: shorttext 1.0.4 released.


	08/06/2018: shorttext 1.0.3 released.


	07/24/2018: shorttext 1.0.2 released.


	07/17/2018: shorttext 1.0.1 released.


	07/14/2018: shorttext 1.0.0 released.


	06/18/2018: shorttext 0.7.2 released.


	05/30/2018: shorttext 0.7.1 released.


	05/17/2018: shorttext 0.7.0 released.


	02/27/2018: shorttext 0.6.0 released.


	01/19/2018: shorttext 0.5.11 released.


	01/15/2018: shorttext 0.5.10 released.


	12/14/2017: shorttext 0.5.9 released.


	11/08/2017: shorttext 0.5.8 released.


	10/27/2017: shorttext 0.5.7 released.


	10/17/2017: shorttext 0.5.6 released.


	09/28/2017: shorttext 0.5.5 released.


	09/08/2017: shorttext 0.5.4 released.


	09/02/2017: end of GSoC project.


	08/22/2017: shorttext 0.5.1 released.


	07/28/2017: shorttext 0.4.1 released.


	07/26/2017: shorttext 0.4.0 released.


	06/16/2017: shorttext 0.3.8 released.


	06/12/2017: shorttext 0.3.7 released.


	06/02/2017: shorttext 0.3.6 released.


	05/30/2017: GSoC project (Chinmaya Pancholi [https://rare-technologies.com/google-summer-of-code-2017-week-1-on-integrating-gensim-with-scikit-learn-and-keras/] ).


	05/16/2017: shorttext 0.3.5 released.


	04/27/2017: shorttext 0.3.4 released.


	04/19/2017: shorttext 0.3.3 released.


	03/28/2017: shorttext 0.3.2 released.


	03/14/2017: shorttext 0.3.1 released.


	02/23/2017: shorttext 0.2.1 released.


	12/21/2016: shorttext 0.2.0 released.


	11/25/2016: shorttext 0.1.2 released.


	11/21/2016: shorttext 0.1.1 released.





What’s New



Released 1.6.1 (December 21, 2023)


	Updated package requirements.






Released 1.6.0 (August 26, 2023)


	Pinned requirements for ReadTheDocs documentation;


	Fixed bugs in word-embedding model mean pooling classifiers;


	Updated package requirements.






Release 1.5.9 (June 19, 2023)


	Support for Python 3.11;


	Removing flask.






Release 1.5.8 (September 23, 2022)


	Package administration.






Release 1.5.7 (September 22, 2022)


	Removal of requirement of pre-installation of numpy and Cython.






Release 1.5.6 (August 29, 2022)


	Speeding up inference of VarNNEmbeddedVecClassifier. (Acknowledgement: Ritesh Agrawal)






Release 1.5.5 (May 28, 2022)


	Support for Python 3.10.






Release 1.5.4 (December 15, 2021)


	Non-negative stop words.






Release 1.5.3 (July 11, 2021)


	Documentation updated.






Release 1.5.2 (July 6, 2021)


	Resolved bugs regarding keras import.


	Support for Python 3.9.






Release 1.5.1 (April 10, 2021)


	Replaced TravisCI with CircleCI in the continuous integration pipeline.






Release 1.5.0 (April 09, 2021)


	Removed support for Python 3.6.


	Removed buggy BERT representations unit test.






Release 1.4.8 (February 11, 2021)


	Updated requirements for scipy for Python 3.7 or above.






Release 1.4.7 (January 11, 2021)


	Updated version of transformers in requirement.txt;


	Updated BERT encoder for the change of implementation;


	Fixed unit tests.






Release 1.4.6 (January 3, 2021)


	Bug regarding Python 3.6 requirement for scipy.






Release 1.4.5 (December 28, 2020)


	Bugs fixed about Python 2 to 3 updates, filter in shorttext.metrics.embedfuzzy.






Release 1.4.4 (December 24, 2020)


	Bugs regarding SumEmbedVeccClassification.py;


	Fixing bugs due to Python 3.6 restriction on scipy.






Release 1.4.3 (November 10, 2020)


	Bugs about transformer-based model on different devices resolved.






Release 1.4.2 (October 18, 2020)


	Documentation requirements and PyUp configs cleaned up.






Release 1.4.1 (September 23, 2020)


	Documentation and codes cleaned up.






Release 1.4.0 (September 2, 2020)


	Provided support BERT-based sentence and tokens embeddings;


	Implemented support for BERTScores.






Release 1.3.0 (July 23, 2020)


	Removed all dependencies on PuLP; all computations of word mover’s distance (WMD) is performed using SciPy.






Release 1.2.6 (June 20, 2020)


	Removed Python-2 codes (urllib2).






Release 1.2.5 (May 20, 2020)


	Update on gensim package usage and requirements;


	Removed some deprecated functions.






Release 1.2.4 (May 13, 2020)


	Update on scikit-learn requirements to >=0.23.0.


	Directly dependence on joblib;


	Support for Python 3.8 added.






Release 1.2.3 (April 28, 2020)


	PyUP scan implemented;


	Support for Python 3.5 decommissioned.






Release 1.2.2 (April 7, 2020)


	Removed dependence on PyStemmer, which is replaced by snowballstemmer.






Release 1.2.1 (March 23, 2020)


	Added port number adjustability for word-embedding API;


	Removal of Spacy dependency.






Release 1.2.0 (March 21, 2020)


	API for word-embedding algorithm for one-time loading.






Release 1.1.6 (December 1, 2019)


	Compatibility with TensorFlow 2.0.0.






Release 1.1.5 (September 24, 2019)


	Decommissioned GCP buckets; using data files stored in AWS S3 buckets.






Release 1.1.4 (July 20, 2019)


	Minor bugs fixed.






Release 1.1.3 (July 7, 2019)


	Updated codes for Console code loading;


	Updated Travis CI script.






Release 1.1.2 (June 5, 2019)


	Updated codes for Fasttext moddel loading as the previous function was deprecated.






Release 1.1.1 (April 23, 2019)


	Bug fixed. (Acknowledgement: Hamish Dickson [https://github.com/hamishdickson] )






Release 1.1.0 (March 3, 2019)


	Size of embedded vectors set to 300 again when necessary; (possibly break compatibility)


	Moving corpus data from Github to Google Cloud Storage.






Release 1.0.8 (February 14, 2019)


	Minor bugs fixed.






Release 1.0.7 (January 30, 2019)


	Compatibility with Python 3.7 with TensorFlow as the backend.






Release 1.0.7 (January 30, 2019)


	Compatibility with Python 3.7 with Theano as the backend;


	Minor documentation changes.






Release 1.0.6 (January 29, 2019)


	Documentation change;


	Word-embedding model used in unit test stored in Amazon S3 bucket.






Release 1.0.5 (January 13, 2019)


	Minor versioning bug fixed.






Release 1.0.4 (October 3, 2018)


	Package keras requirement updated;


	Less dependence on pandas.






Release 1.0.3 (August 6, 2018)


	Bugs regarding I/O of SumEmbeddedVecClassifier.






Release 1.0.2 (July 24, 2018)


	Minor bugs regarding installation fixed.






Release 1.0.1 (July 14, 2018)


	Minor bugs fixed.






Release 1.0.0 (July 14, 2018)


	Python-3 compatibility;


	Replacing the original stemmer to use Snowball;


	Certain functions cythonized;


	Various bugs fixed.






Release 0.7.2 (June 18, 2018)


	Damerau-Levenshtein distance and longest common prefix implemented using Cython.






Release 0.7.1 (May 30, 2018)


	Decorator replaced by base class CompactIOMachine;


	API included in documentation.






Release 0.7.0 (May 17, 2018)


	Spelling corrections and fuzzy logic;


	More unit tests.






Release 0.6.0 (February 27, 2018)


	Support of character-based sequence-to-sequence (seq2seq) models.






Release 0.5.11 (January 19, 2018)


	Removal of word-embedding keras-type layers.






Release 0.5.10 (January 15, 2018)


	Support of encoder module for character-based models;


	Implementation of document-term matrix (DTM).






Release 0.5.9 (December 14, 2017)


	Support of Poincare embedding;


	Code optimization;


	Script ShortTextWord2VecSimilarity updated to ShortTextWordEmbedSimilarity.






Release 0.5.8 (November 8, 2017)


	Removed most explicit user-specification of vecsize for given word-embedding models;


	Removed old namespace for topic models (no more backward compatibility).


	Integration of [FastText](https://github.com/facebookresearch/fastText).






Release 0.5.7 (October 27, 2017)


	Removed most explicit user-specification of vecsize for given word-embedding models;


	Removed old namespace for topic models (hence no more backward compatibility).






Release 0.5.6 (October 17, 2017)


	Updated the neural network framework due to the change in gensim API.






Release 0.5.5 (September 28, 2017)


	Script ShortTextCategorizerConsole updated.






Release 0.5.4 (September 8, 2017)


	Bug fixed;


	New scripts for finding distances between sentences;


	Finding similarity between two sentences using Jaccard index.






End of GSoC Program (September 2, 2017)

Chinmaya summarized his GSoC program in his blog post posted in RaRe Incubator [https://rare-technologies.com/chinmayas-gsoc-2017-summary-integration-with-sklearn-keras-and-implementing-fasttext/].



Release 0.5.1 (August 22, 2017)


	Implementation of Damerau-Levenshtein distance and soft Jaccard score;


	Implementation of Word Mover’s distance.






Release 0.4.1 (July 28, 2017)


	Further Travis.CI update tests;


	Model file I/O updated (for huge models);


	Migrating documentation to [readthedocs.org](readthedocs.org); previous documentation at Pythonhosted.org destroyed.






Release 0.4.0 (July 26, 2017)


	Maximum entropy models;


	Use of gensim Word2Vec keras layers;


	Incorporating new features from gensim;


	Use of Travis.CI for pull request testing.






Release 0.3.8 (June 16, 2017)


	Bug fixed on sumvecframeworks.






Release 0.3.7 (June 12, 2017)


	Bug fixed on VarNNSumEmbedVecClassifier.






Release 0.3.6 (June 2, 2017)


	Added deprecation decorator;


	Fixed path configurations;


	Added “update” corpus capability to gensim models.






Google Summer of Code (May 30, 2017)

Chinamaya Pancholi, a Google Summer of Code (GSoC) student, is involved in
the open-source development of gensim, that his project will be very related
to the shorttext package. More information can be found in his first blog entry [https://rare-technologies.com/google-summer-of-code-2017-week-1-on-integrating-gensim-with-scikit-learn-and-keras/] .



Release 0.3.5 (May 16, 2017)


	Refactoring topic modeling to generators subpackage, but keeping package backward compatible.


	Added Inaugural Addresses as an example training data;


	Fixed bugs about package paths.






Release 0.3.4 (Apr 27, 2017)


	Fixed relative path loading problems.






Release 0.3.3 (Apr 19, 2017)


	Deleted CNNEmbedVecClassifier;


	Added script ShortTextWord2VecSimilarity.




More Info [https://datawarrior.wordpress.com/2017/04/20/release-of-shorttext-0-3-3/]



Release 0.3.2 (Mar 28, 2017)


	Bug fixed for gensim model I/O;


	Console scripts update;


	Neural networks up to Keras 2 standard (refer to this [https://github.com/fchollet/keras/wiki/Keras-2.0-release-notes/] ).






Release 0.3.1 (Mar 14, 2017)


	Compact model I/O: all models are in single files;


	Implementation of stacked generalization using logistic regression.






Release 0.2.1 (Feb 23, 2017)


	Removal attempts of loading GloVe model, as it can be run using gensim script;


	Confirmed compatibility of the package with tensorflow;


	Use of spacy for tokenization, instead of nltk;


	Use of stemming for Porter stemmer, instead of nltk;


	Removal of nltk dependencies;


	Simplifying the directory and module structures;


	Module packages updated.




More Info [https://datawarrior.wordpress.com/2017/02/24/release-of-shorttext-0-2-1/]



Release 0.2.0 (Dec 21, 2016)

Home: Homepage of shorttext





            

          

      

      

    

  

    
      
          
            

Index



 




            

          

      

      

    

  

    
      
          
            
  
Word Embedding Models in API

A lot of embedding models take a few minutes to load, and it would be desirable
for such a model to be loaded in the memory first. It is why such an API
has been developed.


Model Preloading

To preload the model, use the script WordEmbedAPI provided. In
the command-line shell / Terminal, type:

`
> WordEmbedAPI /path/to/GoogleNews-vectors-negative300.bin.gz
`

After a few minutes, it will be loaded.

For details about using WordEmbedAPI, please refer to: Console Scripts .



Class for Preloaded Model

After the model is loaded, it can be used like other word-embedding models
using RESTfulKeyedVectors:

`
>>> import shorttext
>>> wmodel = shorttext.utils.wordembed.RESTfulKeyedVectors('http://localhost', port='5000')
`

This model can be used like other gensim KeyedVectors.

Home: Homepage of shorttext





            

          

      

      

    

  _static/minus.png





_static/plus.png





nav.xhtml

    
      Table of Contents


      
        		
          Homepage of shorttext
        


        		
          Introduction
        


        		
          Installation
          
            		
              PIP
            


            		
              Backend for Keras
            


            		
              Possible Solutions for Installation Failures
            


            		
              Required Packages
            


          


        


        		
          Tutorial
          
            		
              Data Preparation
              
                		
                  Example Training Data 1: Subject Keywords
                


                		
                  Example Training Data 2: NIH RePORT
                


                		
                  Example Training Data 3: Inaugural Addresses
                


                		
                  User-Provided Training Data
                


              


            


            		
              Text Preprocessing
              
                		
                  Standard Preprocessor
                


                		
                  Customized Text Preprocessor
                


                		
                  Tokenization
                


                		
                  Reference
                


              


            


            		
              Document-Term Matrix
              
                		
                  Preparing for the Corpus
                


                		
                  Using Class DocumentTermMatrix
                


                		
                  Reference
                


              


            


            		
              Character to One-Hot Vector
              
                		
                  Reference
                


              


            


            		
              Supervised Classification with Topics as Features
              
                		
                  Topic Vectors as Intermediate Feature Vectors
                


                		
                  Topic Models in gensim: LDA, LSI, and Random Projections
                


                		
                  AutoEncoder
                


                		
                  Abstract Latent Topic Modeling Class
                


                		
                  Classification Using Cosine Similarity
                


                		
                  Classification Using Scikit-Learn Classifiers
                


                		
                  Notes about Text Preprocessing
                


                		
                  Reference
                


              


            


            		
              Word Embedding Models
              
                		
                  Word2Vec
                


                		
                  GloVe
                


                		
                  FastText
                


                		
                  Poincaré Embeddings
                


                		
                  BERT
                


                		
                  Other Functions
                


                		
                  Links
                


                		
                  Reference
                


              


            


            		
              Word-Embedding Cosine Similarity Classifier
              
                		
                  Sum of Embedded Vectors
                


                		
                  Reference
                


              


            


            		
              Deep Neural Networks with Word-Embedding
              
                		
                  Wrapper for Neural Networks for Word-Embedding Vectors
                


                		
                  Provided Neural Networks
                


                		
                  Reference
                


              


            


            		
              Maximum Entropy (MaxEnt) Classifier
              
                		
                  Maxent
                


                		
                  Reference
                


              


            


            		
              Character-Based Sequence-to-Sequence (seq2seq) Models
              
                		
                  Creating One-hot Vectors
                


                		
                  Training
                


                		
                  Decoding
                


                		
                  Model I/O
                


                		
                  Reference
                


              


            


            		
              Stacked Generalization
              
                		
                  Reference
                


              


            


            		
              Metrics
              
                		
                  Edit Distance and Soft Jaccard Score
                


                		
                  Word Mover’s Distance
                


                		
                  Jaccard Index Due to Cosine Distances
                


                		
                  BERTScore
                


                		
                  Reference
                


              


            


            		
              Spell Correctors
              
                		
                  Norvig
                


                		
                  Sakaguchi (SCRNN - semi-character recurrent neural network)
                


                		
                  Reference
                


              


            


          


        


        		
          Console Scripts
          
            		
              ShortTextCategorizerConsole
            


            		
              ShortTextWordEmbedSimilarity
            


            		
              WordEmbedAPI
            


          


        


        		
          API
          
            		
              Shorttext Models Smart Loading
            


            		
              Supervised Classification using Word Embedding
              
                		
                  Module shorttext.generators.seq2seq.s2skeras
                


                		
                  Module shorttext.classifiers.embed.sumvec.VarNNSumEmbedVecClassification
                


              


            


            		
              Neural Networks
              
                		
                  Module shorttext.classifiers.embed.sumvec.frameworks
                


              


            


            		
              Utilities
              
                		
                  Module shorttext.utils.kerasmodel_io
                


                		
                  Module shorttext.utils.gensim_corpora
                


                		
                  Module shorttext.utils.compactmodel_io
                


              


            


            		
              Metrics
              
                		
                  Module shorttext.metrics.dynprog
                


                		
                  Module shorttext.metrics.wassersterin
                


              


            


            		
              Spell Correction
              
                		
                  Module shorttext.spell
                


              


            


          


        


        		
          Frequently Asked Questions (FAQ)
        


        		
          References
        


        		
          Links
          
            		
              Project Codes and Package
            


            		
              Issues
            


            		
              Gensim Incubator
            


            		
              Blog Entries
            


          


        


        		
          News
          
            		
              What’s New
            


            		
              Released 1.6.1 (December 21, 2023)
            


            		
              Released 1.6.0 (August 26, 2023)
            


            		
              Release 1.5.9 (June 19, 2023)
            


            		
              Release 1.5.8 (September 23, 2022)
            


            		
              Release 1.5.7 (September 22, 2022)
            


            		
              Release 1.5.6 (August 29, 2022)
            


            		
              Release 1.5.5 (May 28, 2022)
            


            		
              Release 1.5.4 (December 15, 2021)
            


            		
              Release 1.5.3 (July 11, 2021)
            


            		
              Release 1.5.2 (July 6, 2021)
            


            		
              Release 1.5.1 (April 10, 2021)
            


            		
              Release 1.5.0 (April 09, 2021)
            


            		
              Release 1.4.8 (February 11, 2021)
            


            		
              Release 1.4.7 (January 11, 2021)
            


            		
              Release 1.4.6 (January 3, 2021)
            


            		
              Release 1.4.5 (December 28, 2020)
            


            		
              Release 1.4.4 (December 24, 2020)
            


            		
              Release 1.4.3 (November 10, 2020)
            


            		
              Release 1.4.2 (October 18, 2020)
            


            		
              Release 1.4.1 (September 23, 2020)
            


            		
              Release 1.4.0 (September 2, 2020)
            


            		
              Release 1.3.0 (July 23, 2020)
            


            		
              Release 1.2.6 (June 20, 2020)
            


            		
              Release 1.2.5 (May 20, 2020)
            


            		
              Release 1.2.4 (May 13, 2020)
            


            		
              Release 1.2.3 (April 28, 2020)
            


            		
              Release 1.2.2 (April 7, 2020)
            


            		
              Release 1.2.1 (March 23, 2020)
            


            		
              Release 1.2.0 (March 21, 2020)
            


            		
              Release 1.1.6 (December 1, 2019)
            


            		
              Release 1.1.5 (September 24, 2019)
            


            		
              Release 1.1.4 (July 20, 2019)
            


            		
              Release 1.1.3 (July 7, 2019)
            


            		
              Release 1.1.2 (June 5, 2019)
            


            		
              Release 1.1.1 (April 23, 2019)
            


            		
              Release 1.1.0 (March 3, 2019)
            


            		
              Release 1.0.8 (February 14, 2019)
            


            		
              Release 1.0.7 (January 30, 2019)
            


            		
              Release 1.0.7 (January 30, 2019)
            


            		
              Release 1.0.6 (January 29, 2019)
            


            		
              Release 1.0.5 (January 13, 2019)
            


            		
              Release 1.0.4 (October 3, 2018)
            


            		
              Release 1.0.3 (August 6, 2018)
            


            		
              Release 1.0.2 (July 24, 2018)
            


            		
              Release 1.0.1 (July 14, 2018)
            


            		
              Release 1.0.0 (July 14, 2018)
            


            		
              Release 0.7.2 (June 18, 2018)
            


            		
              Release 0.7.1 (May 30, 2018)
            


            		
              Release 0.7.0 (May 17, 2018)
            


            		
              Release 0.6.0 (February 27, 2018)
            


            		
              Release 0.5.11 (January 19, 2018)
            


            		
              Release 0.5.10 (January 15, 2018)
            


            		
              Release 0.5.9 (December 14, 2017)
            


            		
              Release 0.5.8 (November 8, 2017)
            


            		
              Release 0.5.7 (October 27, 2017)
            


            		
              Release 0.5.6 (October 17, 2017)
            


            		
              Release 0.5.5 (September 28, 2017)
            


            		
              Release 0.5.4 (September 8, 2017)
            


            		
              End of GSoC Program (September 2, 2017)
            


            		
              Release 0.5.1 (August 22, 2017)
            


            		
              Release 0.4.1 (July 28, 2017)
            


            		
              Release 0.4.0 (July 26, 2017)
            


            		
              Release 0.3.8 (June 16, 2017)
            


            		
              Release 0.3.7 (June 12, 2017)
            


            		
              Release 0.3.6 (June 2, 2017)
            


            		
              Google Summer of Code (May 30, 2017)
            


            		
              Release 0.3.5 (May 16, 2017)
            


            		
              Release 0.3.4 (Apr 27, 2017)
            


            		
              Release 0.3.3 (Apr 19, 2017)
            


            		
              Release 0.3.2 (Mar 28, 2017)
            


            		
              Release 0.3.1 (Mar 14, 2017)
            


            		
              Release 0.2.1 (Feb 23, 2017)
            


            		
              Release 0.2.0 (Dec 21, 2016)
            


          


        


      


    
  

_images/nnlib_clstm.png
A4

—— ]
The
movie A4
is ——»@
awesome

!
Lxd

putx E_»@

window feature sequence
feature maps a LSTM






_images/nnlib_cnn.png
rent

nx k representation of Convolutional layer with
sentence with static and multiple filter widths and
non-static channels feature maps

I —

Max-over-time
pooling

Fully connected layer
with dropout and
softmax output





_static/file.png





